
Prepared exclusively for Uwe Ilgenstein

What Readers Are Saying About Crafting Rails Applications

Much of the work of Rails 3 involved significant improvements to its

APIs. If you want to learn more about how to use them in a practical

way, this book is a must-read.

Yehuda Katz

Architect, Strobe, Inc.

Great coders who can clearly explain their code are rare, but José

shows he is one of the rare ones. This book taught me about the way

Rails works, how to exploit its new flexibility, and how I can leverage

my efforts substantially. If you plan to do more than just write apps

with Rails, read this book.

Bill Lazar

Software developer, Glam Media, Inc.

Not many books have been written for more advanced Rails develop-

ers. This book steps into that space and covers totally new ground

with practical techniques that can be put to use right away. Great

stuff.

Gavin Hughes

Developer

This book cuts through the hype surrounding Rails 3 and teaches you

practical techniques to take advantage of the modularity and extensi-

bility that you’ve heard so much about.

Trevor Turk

Freelance developer

Now you have no excuse to avoid learning advanced Rails practices.

This book gives you great in-depth skills for crafting Rails applica-

tions. You can’t afford to miss it.

Santiago Pastorino

Cofounder, WyeWorks

Prepared exclusively for Uwe Ilgenstein

Crafting Rails Applications
Expert Practices for Everyday Rails Development

José Valim

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for Uwe Ilgenstein

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at http://www.pragprog.com.

The team that produced this book includes:

Editor: Brian P. Hogan

Indexing: Potomac Indexing, LLC

Copy edit: Kim Wimpsett

Production: Janet Furlow

Customer support: Ellie Callahan

International: Juliet Benda

Copyright © 2011 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-73-5

ISBN-13: 978-1-934356-73-9

Printed on acid-free paper.

P1.0 printing, March 2011

Version: 2011-3-31

Prepared exclusively for Uwe Ilgenstein

http://www.pragprog.com

Contents
Acknowledgments 7

Preface 8

Who Should Read This Book? 8

What Is in the Book? . 9

How to Read This Book . 11

Online Resources . 11

1 Creating Our Own Renderer 12

1.1 Generating Projects with Enginex 13

1.2 Writing the Renderer 18

1.3 Understanding Rails Rendering Stack 22

1.4 Taking It to the Next Level 27

1.5 Wrapping Up . 29

2 Building Models with Active Model 30

2.1 Creating Our Model 30

2.2 Taking It to the Next Level 46

2.3 Wrapping Up . 50

3 Retrieving View Templates from Custom Stores 52

3.1 Setting Up a SqlResolver 54

3.2 Configuring Our Resolver for Production 62

3.3 Serving Templates with Metal 68

3.4 Wrapping Up . 72

4 Sending Multipart Emails Using Template Handlers 74

4.1 Playing with the Template Handler API 76

4.2 Building a Template Handler with Markdown + ERb 80

4.3 Customizing Rails Generators 85

4.4 Extending Rails with Railties 92

4.5 Wrapping Up . 94

Prepared exclusively for Uwe Ilgenstein

CONTENTS 6

5 Managing Application Events with Rails Engines 97

5.1 Storing Notifications in the Database 98

5.2 Extending Rails with Engines 102

5.3 Rails and Rack . 106

5.4 Storing Notifications Asynchronously 115

5.5 Wrapping Up . 118

6 Writing DRY Controllers with Responders 120

6.1 Understanding Responders 122

6.2 Exploring ActionController::Responder 125

6.3 The Flash Responder 129

6.4 HTTP Cache Responder 135

6.5 More Ways to Customize Generators 139

6.6 Wrapping Up . 145

7 Translating Applications Using Key-Value Backends 147

7.1 Revisiting Rails::Application 148

7.2 I18n Backends and Extensions 150

7.3 Rails and Sinatra . 153

7.4 Understanding the Rails Router 159

7.5 Taking It to the Next Level with Devise and Capybara 161

7.6 Wrapping Up . 168

Index 170

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=6

Acknowledgments
First and foremost, I am grateful to my wife for the care, for the love,

and for occasionally dragging me outside to enjoy the world around us.

Also thanks to my brother, parents, and the rest of family, who have

always supported me.

I also want to thank the guys at Plataforma Tecnologia, specially George

Guimarães, Hugo Baraúna, and Marcelo Park. Without them, this book

would not have been possible. Everyone at Plataforma helped since

day one, when we were deciding the chapter’s contents, until the final

paragraphs.

I am also thankful for the time given by the book reviewers, who steadily

pushed me to increase the book quality. Thank you, Andre Arko, Bill

Lazzar, Carlos Antônio da Silva, Daniel Neighman, Fábio Yamate, Gavin

Hughes, Jonas Nicklas, Josh Kalderimis, Piotr Sarnacki, Santiago Pas-

torino, Trevor Turk, Vinícius Baggio, and Xavier Noria.

Special thanks to my editor, Brian Hogan, and the Pragmatic Program-

mers, who helped me to change the book from great to excellent, and

to Yehuda Katz for supporting me not only while writing this book but

in Rails Core development as a whole.

Prepared exclusively for Uwe Ilgenstein

Preface
Rails 3 is so much more than the next iteration of an excellent web

development framework.

When Rails was first released in 2004, it revolutionized how web devel-

opment was done by embracing concepts like Don’t Repeat Yourself

(DRY) and convention over configuration. As Rails gained momentum,

the conventions that were making things work so well on the golden

path started to get in the way of developers who had the urge to extend

how Rails behaved or even replace whole components.

Some developers felt that using DataMapper instead of Active Record

was a better fit. Other developers turned to MongoDB and other nonre-

lational databases but still wanted to use their favorite web framework.

Then there were those developers who preferred RSpec to Test::Unit.

These developers hacked, cobbled, or monkey-patched solutions to-

gether to accomplish their goals because previous versions of Rails

did not provide a solid API or the modularity required to make these

changes in a clean, maintainable fashion. Rails 3 significantly changes

this game by exposing a set of more robust, modular, and performant

APIs.

This book guides you through these new APIs through practical exam-

ples. In each chapter, we will use test-driven development to build a

Rails extension or application that covers new Rails 3 features and how

these features fit in the Rails 3 architecture. By the time you finish this

book, you will understand Rails better and be more productive while

writing more modular and faster Rails applications.

Who Should Read This Book?

If you’re an intermediate or advanced Rails developer looking to dig

deeper and make the Rails framework work for you, this is for you.

We’ll go beyond the basics of Rails; instead of showing how Rails lets

Prepared exclusively for Uwe Ilgenstein

WHAT IS IN THE BOOK? 9

you use its built-in features to render HTML or XML from a controller,

we’ll show you how the render method works so you can customize it to

accept custom options, such as :pdf.

Rails Versions

All projects in Crafting Rails Applications were developed and tested

against Rails 3.0.3. Future stable releases, like Rails 3.0.4, 3.0.5, and

so forth, should be suitable as well. You can check your Rails version

with the following command:

rails -v

And you can use gem install to get the most appropriate version:

gem install rails -v 3.0.3

This book also has excerpts from Rails’ source code. All these excerpts

were extracted from Rails 3.0.3.

All of the projects we’ll build in this book should be compatible with

Rails 3.1. In case we have small compatibility issues and deprecations,

they will be posted in the online forum at the book’s website.1

Note for Windows Developers

Some chapters have dependencies that rely on C extensions. These

dependencies install fine in UNIX systems, but Windows developers

need the DevKit,2 a toolkit that enables you to build many of the native

C/C++ extensions available for Ruby.

Download and installation instructions are available online at http://

rubyinstaller.org/downloads/.

Alternatively, you can get everything you need by installing RailsIn-

staller,3 which packages Ruby, Rails, and the DevKit, as well as several

other common libraries.

What Is in the Book?

We’ll explore the inner workings of Rails across seven chapters.

1. http://www.pragprog.com/titles/jvrails/

2. http://rubyinstaller.org/downloads/

3. http://railsinstaller.org

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://rubyinstaller.org/downloads/
http://rubyinstaller.org/downloads/
http://www.pragprog.com/titles/jvrails/
http://rubyinstaller.org/downloads/
http://railsinstaller.org
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=9

WHAT IS IN THE BOOK? 10

In Chapter 1, Creating Our Own Renderer, on page 12, we will introduce

Enginex,4 a tool used throughout this book to create Rails extensions,

and customize render to accept :pdf as an option with a behavior we will

define. This chapter starts a series of discussions about Rails’ rendering

stack.

In Chapter 2, Building Models with Active Model, on page 30, we will

take a look at Active Model and its modules as we create an extension

called Mail Form that receives data through a form and sends it to a

preconfigured email.

Then in Chapter 3, Retrieving View Templates from Custom Stores, on

page 52, we will revisit the Rails rendering stack and customize it to

read templates from a database instead of the filesystem. At the end of

the chapter, we will learn how to build faster controllers using Rails 3’s

modularity.

In Chapter 4, Sending Multipart Emails Using Template Handlers, on

page 74, we will create a new template handler (like ERb and Haml)

on top of Markdown.5 We’ll then create new generators and seamlessly

integrate them into Rails.

And in Chapter 5, Managing Application Events with Rails Engines, on

page 97, we will build a Rails engine that stores all SQL queries exe-

cuted by our application in a MongoDB database and exposes them for

further analysis through a web interface. We will also see how we can

use Ruby’s Thread and Queue classes in the Ruby Standard Library to

do the asynchronous processing.

In Chapter 6, Writing DRY Controllers with Responders, on page 120, we

will study Rails 3’s responders and how we can use them to encapsulate

controllers’ behavior, making our controllers simpler and our applica-

tions more modular. We will then extend Rails responders to add HTTP

Cache and internationalized Flash messages by default. At the end of

the chapter, we will learn how to customize Rails’ scaffold generators

for enhanced productivity.

Finally, in Chapter 7, Translating Applications Using Key-Value Back-

ends, on page 147, we will learn about I18n and customize it to read

and store translations in a Redis data store. We will create an appli-

cation that uses Sinatra as a Rails extension so we can modify these

4. https://github.com/josevalim/enginex

5. http://daringfireball.net/projects/markdown

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

https://github.com/josevalim/enginex
http://daringfireball.net/projects/markdown
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=10

HOW TO READ THIS BOOK 11

translations from Redis through a web interface. We will protect this

translation interface using Devise6 and show Capybara’s7 flexibility to

write integration tests for different browsers.

How to Read This Book

We’ll build a project from scratch in each chapter. Although these pro-

jects do not depend on each other, most of the discussions in each

chapter depend on what you learned previously. For example, in Chap-

ter 1, Creating Our Own Renderer, on the next page, we discuss Rails’

rendering stack, and then we take this discussion further in Chapter 3,

Retrieving View Templates from Custom Stores, on page 52 and finish

it in Chapter 4, Sending Multipart Emails Using Template Handlers, on

page 74. In other words, you can skip around, but to get the big picture,

you should read the chapters in the order they are presented.

Online Resources

The book’s website8 has links to an interactive discussion forum as

well as errata for the book. You’ll also find the source code for all the

projects we build. Readers of the ebook can click the gray box above

the code excerpts to download that snippet directly.

If you find a mistake, please create an entry on the errata page so we

can address it. If you have an electronic copy of this book, there are

links in the footer of each page that you can use to easily submit errata

to us.

Let’s get started by creating a Rails extension that customizes the render

method so we can learn how Rails’ rendering stack works.

José Valim

March 2011

jose.valim@plataformatec.com.br

6. https://github.com/plataformatec/devise

7. https://github.com/jnicklas/capybara

8. http://www.pragprog.com/titles/jvrails/

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

https://github.com/plataformatec/devise
https://github.com/jnicklas/capybara
http://www.pragprog.com/titles/jvrails/
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=11

In this chapter, we’ll see

• Rails extensions and their basic structure

• How to customize the render method to accept custom

options

• Rails rendering stack basics

Chapter 1

Creating Our Own Renderer
Like many web frameworks, Rails uses the MVC architecture pattern

to organize our code. The controller, most of the time, is responsible

for gathering information from our models and sending the data to the

view for rendering. On other occasions, the model is responsible for

representing itself, and then the view does not take part in the request,

as usually happens in XML requests. Those two scenarios can be illus-

trated in the following index action:

class PostsController < ApplicationController

def index

if client_authenticated?

render :xml => Post.all

else

render :template => "shared/not_authenticated", :status => 401

end

end

end

The common interface to render a given model or template is the render

method. Besides knowing how to render a :template or a :file, Rails also

can render raw :text and a few formats like :xml, :json, and :js. Although

the default set of options provided by Rails is enough to bootstrap our

applications, we sometimes need to add new options like :pdf or :csv to

the render method.

Prior to Rails 3, there was no public API to add our own option to render,

and we needed to resort to methods like alias_method_chain to modify the

rendering stack. Rails 3 changes this by introducing a new API that we

can use to create our own renderers. We’ll explore this API as we modify

Prepared exclusively for Uwe Ilgenstein

GENERATING PROJECTS WITH ENGINEX 13

the render method to accept :pdf as an option and return a PDF created

with Prawn,1 a tiny, fast, and nimble PDF writer library for Ruby.

As in most chapters in this book, we’ll develop the code as a Ruby gem,

making it easy to share the code across different Rails applications.

To bootstrap those gems, we will use a tool called Enginex2 developed

specifically for this book. In the same way the rails command generates a

bare application, Enginex provides the enginex command that generates

a bare gem for us.

Let’s do it!

1.1 Generating Projects with Enginex

Enginex is a Ruby gem that creates a bare project to be used within

Rails 3, including a Rakefile, Gemfile, and a ready-to-run test suite built

on top of a Rails application. Enginex allows us to move from a simple

gem to a Rails::Railtie and then to a Rails::Engine easily, as we will see in

the next chapters. Let’s install it:

gem install enginex

After we install Enginex, we are ready to craft our first gem for Rails 3.

Let’s call it pdf_renderer:

enginex pdf_renderer

The command’s output is quite verbose; it tells us everything that is

happening:

STEP 1 Creating gem skeleton

create

create pdf_renderer.gemspec

create Gemfile

create lib/pdf_renderer.rb

create MIT-LICENSE

create Rakefile

create README.rdoc

create test/pdf_renderer_test.rb

create test/integration/navigation_test.rb

create test/support/integration_case.rb

create test/test_helper.rb

create .gitignore

STEP 2 Vendoring Rails application at test/dummy

create

create README

1. https://github.com/sandal/prawn

2. https://github.com/josevalim/enginex

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

https://github.com/sandal/prawn
https://github.com/josevalim/enginex
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=13

GENERATING PROJECTS WITH ENGINEX 14

create .gitignore

create Rakefile

create config.ru

create Gemfile

create app [...]

create config [...]

create db [...]

create doc [...]

create lib [...]

create log [...]

create public [...]

create script [...]

create test [...]

create tmp [...]

create vendor [...]

STEP 3 Configuring Rails application

force test/dummy/config/boot.rb

force test/dummy/config/application.rb

gsub test/dummy/config/environments/test.rb

STEP 4 Removing unneeded files

remove test/dummy/.gitignore

remove test/dummy/db/seeds.rb

remove test/dummy/doc

remove test/dummy/Gemfile

remove test/dummy/lib/tasks

remove test/dummy/public/images/rails.png

remove test/dummy/public/index.html

remove test/dummy/public/robots.txt

remove test/dummy/Rakefile

remove test/dummy/README

remove test/dummy/test

remove test/dummy/vendor

First, it creates the basic gem structure, including lib and test folders.

Next, it creates a Rails 3 application at test/dummy, allowing us to run

our tests inside a Rails 3 application context. The third step modifies

the dummy application load path and configuration, while the last step

removes unneeded files. Let’s take a deeper look at those generated

files.

Gemfile

The Gemfile lists all required dependencies to run the tests in our newly

created gem. To install those dependencies, you will need Bundler.3

Bundler locks our environment to use only the gems listed in the Gem-

file, ensuring the tests are executed using the specified gems.

3. https://github.com/carlhuda/bundler

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

https://github.com/carlhuda/bundler
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=14

GENERATING PROJECTS WITH ENGINEX 15

The generated Gemfile by default requires the following gems: rails, capy-

bara (for integration tests), and sqlite3. Let’s install these gems by run-

ning the following command inside the pdf_renderer directory:

bundle install

Rakefile

The Rakefile provides basic tasks to run the test suite and generate doc-

umentation. We can get the full list by executing rake -T at pdf_renderer’s

root:

rake clobber_package # Remove package products

rake clobber_rdoc # Remove rdoc products

rake rdoc # Build the rdoc HTML Files

rake rerdoc # Force a rebuild of the RDOC files

rake test # Run tests

pdf_renderer.gemspec

The pdf_renderer.gemspec provides a basic gem specification. If at the

end of this chapter you want to use this gem in Rails applications, you

just need to push it to a Git repository and reference the Git path in

your application Gemfile.

Notice the gem has the same name as the file inside the lib, which is

pdf_renderer. By following this convention, whenever you declare this

gem in a Rails application’s Gemfile, the file at lib/pdf_renderer.rb will be

automatically loaded.

Booting the Dummy Application

Enginex creates a dummy Rails 3 application inside our test directory,

and the booting process of this application is the same as a normal

application created with the rails command.

Different from previous versions, in Rails 3 the config/boot.rb file has

only one responsibility: to configure our application’s load paths. The

config/application.rb file should then load all required dependencies and

configure the application, which is initialized in config/environment.rb.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=15

GENERATING PROJECTS WITH ENGINEX 16

That said, Enginex simply changes test/dummy/config/boot.rb to add pdf_

renderer to the load path and to use the Gemfile at our gem root:

require 'rubygems'

gemfile = File.expand_path('../../../../Gemfile', __FILE__)

if File.exist?(gemfile)

ENV['BUNDLE_GEMFILE'] = gemfile

require 'bundler'

Bundler.setup

end

$:.unshift File.expand_path('../../../../lib', __FILE__)

And then test/dummy/config/application.rb is modified to load pdf_

renderer just after all dependencies are loaded with Bundler.require:

require File.expand_path('../boot', __FILE__)

require "active_model/railtie"

require "active_record/railtie"

require "action_controller/railtie"

require "action_view/railtie"

require "action_mailer/railtie"

Bundler.require

require "pdf_renderer"

Finally, note that we don’t require active_resource/railtie. This is because

Active Resource won’t be discussed in this book, since it wasn’t sub-

stantially changed in Rails 3.0.

Running Tests

Enginex creates two sanity tests for our gem. Let’s run our tests and

see them pass with the following:

rake test

You should see an output similar to this:

Started

..

Finished in 0.039055 seconds.

2 tests, 2 assertions, 0 failures, 0 errors

The first test, defined in test/pdf_renderer_test.rb, just asserts that a mod-

ule called PdfRenderer was defined in lib/pdf_renderer.rb.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=16

GENERATING PROJECTS WITH ENGINEX 17

require 'test_helper'

class PdfRendererTest < ActiveSupport::TestCase

test "truth" do

assert_kind_of Module, PdfRenderer

end

end

The other test, in test/integration/navigation_test.rb, ensures that a Rails

application was properly initialized by checking that Rails.application

points to an instance of Dummy::Application, which is the application

class defined at test/dummy/config/application.rb:

require 'test_helper'

class NavigationTest < ActiveSupport::IntegrationCase

test "truth" do

assert_kind_of Dummy::Application, Rails.application

end

end

Notice the test uses ActiveSupport::IntegrationCase, which is not defined

by Rails but inside test/support/integration_case.rb, as shown here:

Define a bare test case to use with Capybara

class ActiveSupport::IntegrationCase < ActiveSupport::TestCase

include Capybara

include Rails.application.routes.url_helpers

end

The previous test case simply includes Capybara,4 which provides a

bunch of helpers to aid integration testing, and the test includes our

application URL helpers. The reason we chose to create our own Active-

Support::IntegrationCase instead of using ActionController::IntegrationTest

provided by Rails is in line with Capybara philosophy, which we will

discuss in later chapters.

Finally, note that both test files require test/test_helper.rb, which is the

file responsible for loading our application and configuring our testing

environment. With our gem skeleton created and a green test suite, we

can start writing our first custom renderer.

4. https://github.com/jnicklas/capybara

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

https://github.com/jnicklas/capybara
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=17

WRITING THE RENDERER 18

1.2 Writing the Renderer

At the beginning of this chapter, we briefly discussed the render method

and a few options it accepts, but we haven’t formally described what a

renderer is.

A renderer is nothing more than a hook exposed by the render method

to customize its behavior. Adding our own renderer to Rails is quite

simple. Let’s take a look at the :xml renderer in Rails source code as an

example:

Download rails/actionpack/lib/action_controller/metal/renderers.rb

add :xml do |xml, options|

self.content_type ||= Mime::XML

self.response_body = xml.respond_to?(:to_xml) ? xml.to_xml(options) : xml

end

So, whenever we invoke the following method in our application:

render :xml => @post

it will invoke the block given to the :xml renderer. The local variable xml

inside the block points to the @post object, and the other options given

to render will be available in the options variable. In this case, since the

method was called without any extra options, it’s an empty hash.

In the following sections, we want to add a :pdf renderer that creates

a PDF file from a given template and sends it to the client with the

appropriate headers. The value given to the :pdf option should be the

name of the file to be sent. The following is an example of the API we

want to provide:

render :pdf => "contents", :template => "path/to/template"

Although Rails knows how to render templates and send files to the

client, it does not know how to handle PDF files. For this, we will use

Prawn.

Playing with Prawn

Prawn5 is a PDF-writing library for Ruby. We can install it as a gem

with the following command:

gem install prawn -v=0.8.4

5. https://github.com/sandal/prawn

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/rails/actionpack/lib/action_controller/metal/renderers.rb
https://github.com/sandal/prawn
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=18

WRITING THE RENDERER 19

Let’s test this by opening irb and creating a simple PDF file:

require 'rubygems'

require 'prawn'

pdf = Prawn::Document.new

pdf.text("A PDF in four lines of code")

pdf.render_file("recipes.pdf")

Exit irb, and you can see a PDF file in the directory in which you started

the irb session. Prawn provides its own syntax to create PDFs, and

although this gives us a flexible API, the drawback is that it cannot

create PDF from HTML files.

Code in Action

With Prawn installed, we are ready to develop our renderer. Let’s add

prawn as a dependency to our Gemfile:

Download pdf_renderer/1_first_test/Gemfile

gem "prawn", "0.8.4"

After installing the dependencies and before writing the code, let’s write

some tests first. Since we have a dummy application at test/dummy, we

can create controllers as in an actual Rails application and use them

to test the complete request stack. Let’s call the controller used in our

tests HomeController and add the following contents:

Download pdf_renderer/1_first_test/test/dummy/app/controllers/home_controller.rb

class HomeController < ApplicationController

def index

respond_to do |format|

format.html

format.pdf { render :pdf => "contents" }

end

end

end

Now let’s create both HTML and PDF views for the index action:

Download pdf_renderer/1_first_test/test/dummy/app/views/home/index.html.erb

<p>Hey, you can download the pdf for this page by clicking the link below:</p>

<p><%= link_to "PDF", home_path("pdf") %></p>

Download pdf_renderer/1_first_test/test/dummy/app/views/home/index.pdf.erb

This is your new PDF content.

The HTML view only contains a link pointing to the PDF download.

Finally, let’s add a route for the index action:

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/pdf_renderer/1_first_test/Gemfile
http://media.pragprog.com/titles/jvrails/code/pdf_renderer/1_first_test/test/dummy/app/controllers/home_controller.rb
http://media.pragprog.com/titles/jvrails/code/pdf_renderer/1_first_test/test/dummy/app/views/home/index.html.erb
http://media.pragprog.com/titles/jvrails/code/pdf_renderer/1_first_test/test/dummy/app/views/home/index.pdf.erb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=19

WRITING THE RENDERER 20

Download pdf_renderer/1_first_test/test/dummy/config/routes.rb

Dummy::Application.routes.draw do

match "/home(.:format)", :to => "home#index", :as => :home

end

Now let’s write an integration test that verifies a PDF is in fact being

returned when we click the PDF link at /home:

Download pdf_renderer/1_first_test/test/integration/navigation_test.rb

require 'test_helper'

class NavigationTest < ActiveSupport::IntegrationCase

test 'pdf request sends a pdf as file' do

visit home_path

click_link 'PDF'

assert_equal 'binary', headers['Content-Transfer-Encoding']

assert_equal 'attachment; filename="contents.pdf"',

headers['Content-Disposition']

assert_equal 'application/pdf', headers['Content-Type']

assert_match /Prawn/, page.body

end

protected

def headers

page.response_headers

end

end

The test inherits from ActiveSupport::IntegrationCase and uses a few

helpers defined in Capybara, such as visit and click_link, providing a clean

and easy-to-read DSL to our integration tests. The test uses the head-

ers to assert that a binary-encoded PDF file was sent as an attachment,

including the expected filename, and although we cannot assert any-

thing about the PDF body since it’s encoded, we can at least assert that

it was generated by Prawn. Let’s run our test with rake test and watch it

fail:

1) Error:

test_pdf_request_sends_a_pdf_as_file(NavigationTest):

NameError: uninitialized constant Mime::PDF

app/controllers/home_controller.rb:5:in `index'

app/controllers/home_controller.rb:3:in `index'

The test fails because we are calling format.pdf in our controller, but

Rails does not know anything about PDF MIME types. To find out what

formats Rails 3 supports by default, let’s take a quick look at the Rails

source code:

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/pdf_renderer/1_first_test/test/dummy/config/routes.rb
http://media.pragprog.com/titles/jvrails/code/pdf_renderer/1_first_test/test/integration/navigation_test.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=20

WRITING THE RENDERER 21

Download rails/actionpack/lib/action_dispatch/http/mime_types.rb

Build list of Mime types for HTTP responses

http://www.iana.org/assignments/media-types/

Mime::Type.register "text/html", :html, %w(application/xhtml+xml), %w(xhtml)

Mime::Type.register "text/plain", :text, [], %w(txt)

Mime::Type.register "text/javascript", :js,

%w(application/javascript application/x-javascript)

Mime::Type.register "text/css", :css

Mime::Type.register "text/calendar", :ics

Mime::Type.register "text/csv", :csv

Mime::Type.register "application/xml", :xml, %w(text/xml application/x-xml)

Mime::Type.register "application/rss+xml", :rss

Mime::Type.register "application/atom+xml", :atom

Mime::Type.register "application/x-yaml", :yaml, %w(text/yaml)

Mime::Type.register "multipart/form-data", :multipart_form

Mime::Type.register "application/x-www-form-urlencoded", :url_encoded_form

http://www.ietf.org/rfc/rfc4627.txt

http://www.json.org/JSONRequest.html

Mime::Type.register "application/json", :json,

%w(text/x-json application/jsonrequest)

Create Mime::ALL but do not add it to the SET.

Mime::ALL = Mime::Type.new("*/*", :all, [])

Because no PDF format is defined, we need to add one. Let’s start by

writing some unit tests in the test/pdf_renderer_test.rb file and removing

the existing test in the file because it has nothing to add. The test file

will look like the following:

Download pdf_renderer/2_adding_mime/test/pdf_renderer_test.rb

require 'test_helper'

class PdfRendererTest < ActiveSupport::TestCase

test "pdf mime type" do

assert_equal :pdf, Mime::PDF.to_sym

assert_equal "application/pdf", Mime::PDF.to_s

end

end

The test makes two assertions that ensures whenever format.pdf is

called, it will retrieve the Mime::PDF type and then set "application/pdf"

as the response content type. To make this test pass, let’s register the

pdf MIME type at lib/pdf_renderer.rb:

Download pdf_renderer/2_adding_mime/lib/pdf_renderer.rb

require "action_controller"

Mime::Type.register "application/pdf", :pdf

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/rails/actionpack/lib/action_dispatch/http/mime_types.rb
http://media.pragprog.com/titles/jvrails/code/pdf_renderer/2_adding_mime/test/pdf_renderer_test.rb
http://media.pragprog.com/titles/jvrails/code/pdf_renderer/2_adding_mime/lib/pdf_renderer.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=21

UNDERSTANDING RAILS RENDERING STACK 22

The previous code ensures that Action Controller was already loaded

and then registers Mime::PDF, making our unit test pass. However, when

we run the integration test again, it still fails but for a different reason:

1) Failure:

test_pdf_request_sends_a_pdf_as_file(NavigationTest)

<"binary"> expected but was

<nil>.

The test fails because no header was sent. This is expected since we

still haven’t implemented our renderer. So, let’s write it in a few lines of

code inside lib/pdf_renderer.rb:

Download pdf_renderer/3_final/lib/pdf_renderer.rb

require "action_controller"

Mime::Type.register "application/pdf", :pdf

require "prawn"

ActionController::Renderers.add :pdf do |filename, options|

pdf = Prawn::Document.new

pdf.text render_to_string(options)

send_data(pdf.render, :filename => "#{filename}.pdf",

:type => "application/pdf", :disposition => "attachment")

end

And that’s it! In this code block, we create a new PDF document, add

some text to it, and send the PDF using the send_data method available

in Rails. We can now run the tests and watch them pass! You can also

go to test/dummy, start the server with bundle exec rails server, and test it

by yourself by accessing http://localhost:3000/home and clicking the link.

Although send_data is a public Rails method and has been available

since the first Rails versions, you might not have heard about the ren-

der_to_string method. To better understand it, let’s take a look at the

Rails rendering process as a whole.

1.3 Understanding Rails Rendering Stack

Versions of Rails before Rails 3 had a lot of code duplication between

Action Mailer and Action Controller because both have several features

in common, such as template rendering, helpers, and layouts.

In Rails 3 those shared responsibilities are centralized in Abstract Con-

troller, which both Action Mailer and Action Controller use as their

foundation. Abstract Controller also allows us to cherry-pick exactly

the features we want. For instance, if we want an object to have basic

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/pdf_renderer/3_final/lib/pdf_renderer.rb
http://localhost:3000/home
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=22

UNDERSTANDING RAILS RENDERING STACK 23

render AbstractController::Rendering

_normalize_args AbstractController::Rendering

render_to_body AbstractController::Rendering

_process_options AbstractController::Rendering

view_assigns

render

_render_template

AbstractController::Rendering

ActionView::Base

AbstractController::Rendering

_normalize_options AbstractController::Rendering

_determine_template

_render_template

ActionView::Base

ActionView::Base

render_to_string AbstractController::Rendering

Figure 1.1: Visualization of the rendering stack when we call render with

AbstractController::Rendering

rendering capabilities, where it simply renders a template but does not

include a layout, we just need to include AbstractController::Rendering in

our object.

When we include AbstractController::Rendering in an object, every time we

call render, the rendering stack proceeds as in Figure 1.1.

Each rectangle represents a method, followed by the classes that imple-

ment it on the right. The arrows represent method calls. In this case,

render calls the render_to_string method, which calls three methods, re-

spectively: _normalize_args, _normalize_options, and render_to_body. This

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=23

UNDERSTANDING RAILS RENDERING STACK 24

can be confirmed by looking at both render and render_to_string imple-

mentations in Rails source code:

Download rails/actionpack/lib/abstract_controller/rendering.rb

def render(*args, &block)

self.response_body = render_to_string(*args, &block)

end

def render_to_string(*args, &block)

options = _normalize_args(*args, &block)

_normalize_options(options)

render_to_body(options)

end

Abstract Controller’s rendering stack is responsible for normalizing the

arguments and options given by you and converting them to a hash of

options that complies with the public API defined by ActionView::Base#

render. Each method in the stack (shown in Figure 1.1, on the previ-

ous page) plays a specific role under this overall responsibility. These

methods can be either private (starting with an underscore) or part of

the public API.

The first relevant method in the stack is _normalize_args, and it converts

the arguments provided by the user into a hash. This allows the render

method to be invoked as render(:new), which is converted by _normal-

ize_args to render(:action => "new"). The hash returned by _normalize_args

is then further normalized by _normalize_options. There is not much

normalization happening inside AbstractController::Rendering#_normalize_

options since it’s the basic module, but it does convert render(:partial =>

true) calls to render(:partial => action_name). So, whenever you give :partial

=> true in a show action, the view will actually receive :partial => "show".

After normalization, render_to_body is invoked. We can say that this is

where the actual rendering starts to take place. The first step is to

process all options that are meaningless to the view, using the _pro-

cess_options method. Although AbstractController::Rendering#_process_

options is an empty method, we can look into ActionController::Rendering#_

process_options for a handful of examples about what to do in this meth-

od. For instance, in controllers we are allowed to invoke the following:

render :template => "shared/not_authenticated", :status => 401

Here the :status option is meaningless to views, since status refers to the

HTTP response status. So, it’s ActionController::Rendering#_process_op-

tions’s responsibility to intercept and handle this option and many

others.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/rails/actionpack/lib/abstract_controller/rendering.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=24

UNDERSTANDING RAILS RENDERING STACK 25

After options processing, _render_template is invoked, and it creates

an instance of ActionView::Base called view_context, passing in the view_

assigns, and then calls render on it. If you are not familiar with the term

assigns, it references the group of variables available in the controller

that will be accessible in the view. By default, whenever you set an

instance variable in your controller as @posts = Post.all, @posts is marked

as an assign and will also be available in views.

At this point, it’s important to note the inversion of concerns that hap-

pened between Rails 2.3 and Rails 3.0. In the former, the view was

responsible for retrieving assigns from the controller, while in the lat-

ter, the controller tells the view which assigns to use.

Imagine that we want a controller that does not send any assigns to

the view. In Rails 2.3, since the view automatically pulls in all instance

variables from controllers, to achieve that, we should either stop using

instance variables in our controller or be sure to remove all instance

variables before rendering a template. In Rails 3, since this responsi-

bility is now in the controller, we just need to overwrite the view_assigns

method to return an empty hash:

class UsersController < ApplicationController

protected

def view_assigns

{}

end

end

After it assigns evaluation, the render view method is invoked, and it

breaks down into two main steps: _determine_template and _render_tem-

plate. The former is responsible for finding the template, depending on

the normalized options, and handing it to the latter so the template is

finally rendered.

This modular and well-defined stack allows anyone to hook into the

rendering process and add their own features. This is what happens

when we include AbstractController::Layouts in our object. The rendering

stack is extended as exhibited in Figure 1.2, on the following page.

AbstractController::Layouts simply overrides _normalize_options to include

the :layout option based on the value configured by the developer at the

controller class level. Action Controller further extends the Abstract

Controller rendering stack, adding and processing options that makes

sense only in the controller scope. Those extensions are broken into

three main modules:

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=25

UNDERSTANDING RAILS RENDERING STACK 26

render AbstractController::Rendering

_normalize_args AbstractController::Rendering

render_to_body AbstractController::Rendering

_process_options AbstractController::Rendering

view_assigns

render

_render_template

AbstractController::Rendering

ActionView::Base

AbstractController::Rendering

_normalize_options
AbstractController::Layouts
AbstractController::Rendering

_determine_template

_render_template

ActionView::Base

ActionView::Base

render_to_string AbstractController::Rendering

Figure 1.2: Visualization of the rendering stack when we call render with

AbstractController::Rendering and AbstractController::Layouts

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=26

TAKING IT TO THE NEXT LEVEL 27

• ActionController::Rendering: Overrides render to check whenever it’s

called twice, raising a DoubleRenderError, and also overrides _pro-

cess_options to handle options such as :location, :status, and :con-

tent_type

• ActionController::Renderers: Adds the API we used in this chapter,

which allows us to trigger a specific behavior whenever a given key

(like :pdf) is supplied

• ActionController::Instrumentation: Overloads the render method so it

can measure how much time was spent in the rendering stack

The final stack with both Abstract Controller and Action Controller

modules is shown in Figure 1.3, on the next page.

At first, it seems there are no differences between render and render_to_

string, but when we analyze the whole rendering stack, we can see

that some Action Controller modules overload render to add additional

behavior while leaving render_to_string alone.

For instance, by using render_to_string in our renderer, we ensure instru-

mentation events defined by ActionController::Instrumentation won’t be

triggered twice and that it won’t raise a double render error, since both

were added only to the render method.

1.4 Taking It to the Next Level

Going back to our renderer implementation, we now fully understand

what happens when we add the following line to our controllers:

format.pdf { render :pdf => "contents" }

Internally, it becomes the following:

pdf.text render_to_string({})

And when we invoke render_to_string with an empty hash, the _normal-

ize_options method in the rendering stack detects the empty hash and

changes it to render the template with the same name as the current

action. At the end, render_to_string({}) is simply calling render :template =>

"#{controller_name}/#{action_name}" in the view object.

The fact that our renderer forwards the given options to the render_to_

string method allows us to also use the following syntax:

render :pdf => "contents", :template => "path/to/template"

And internally, it’s the same as the following:

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=27

TAKING IT TO THE NEXT LEVEL 28

render
ActionController::Instrumentation
ActionController::Rendering
AbstractController::Rendering

_normalize_args
ActionController::Rendering
AbstractController::Rendering

render_to_body
ActionController::Renderers
AbstractController::Rendering

_process_options
ActionController::Rendering
AbstractController::Rendering

view_assigns

render

_render_template

AbstractController::Rendering

ActionView::Base

AbstractController::Rendering

_normalize_options
ActionController::Rendering
AbstractController::Layouts
AbstractController::Rendering

_determine_template

_render_template

ActionView::Base

ActionView::Base

render_to_string AbstractController::Rendering

Figure 1.3: Visualization of the rendering stack when we call render with

AbstractController and ActionController

pdf.text render_to_string(:template => "path/to/template")

which is sent straight to the view.

To finish this renderer, let’s add a test ensuring this is exactly what

happens! Our test invokes a new action in HomeController that calls

render with both :pdf and :template options:

Download pdf_renderer/3_final/test/dummy/app/controllers/home_controller.rb

def another

render :pdf => "contents", :template => "home/index"

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/pdf_renderer/3_final/test/dummy/app/controllers/home_controller.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=28

WRAPPING UP 29

Let’s add a route for this new action:

Download pdf_renderer/3_final/test/dummy/config/routes.rb

match "/another(.:format)", :to => "home#another", :as => :another

Our test simply accesses "/another.pdf" and ensures a PDF is being

returned:

Download pdf_renderer/3_final/test/integration/navigation_test.rb

test 'pdf renderer uses the specified template' do

visit '/another.pdf'

assert_equal 'binary', headers['Content-Transfer-Encoding']

assert_equal 'attachment; filename="contents.pdf"',

headers['Content-Disposition']

assert_equal 'application/pdf', headers['Content-Type']

assert_match /Prawn/, page.body

end

Now run the tests and watch them pass once again!

1.5 Wrapping Up

In this chapter we created a renderer for the PDF format. Using these

ideas, you can easily create renderers for formats such as PDF, CSV,

and ATOM and encapsulate any logic specific to your application in

a renderer as well. You could even create a wrapper for other PDF

libraries that are actually able to convert HTML files to PDF, such as

the paid Prince XML6 library or the open source Flying Saucer,7 which

is written in Java but easily accessible through JRuby.8

We also discussed the Rails rendering stack and its modularity. Since

Rails itself relies on this well-defined stack to extend Action Controller

and Action Mailer, this API is by consequence more robust because it

was battle-tested by Rails’ own features and different use cases. As we

will see in the chapters that follow, this was a common practice while

designing most of the new Rails 3 APIs.

Rails’ renderers open several possibilities to extend your rendering

stack. But as any other powerful tool, remember to use it wisely.

Next, let’s take a look at Active Model and its modules and create a

Rails extension that can be used in Rails controllers and views.

6. http://www.princexml.com/

7. http://xhtmlrenderer.dev.java.net/

8. http://jruby.org/

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/pdf_renderer/3_final/test/dummy/config/routes.rb
http://media.pragprog.com/titles/jvrails/code/pdf_renderer/3_final/test/integration/navigation_test.rb
http://www.princexml.com/
http://xhtmlrenderer.dev.java.net/
http://jruby.org/
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=29

In this chapter, we’ll see

• Active Model and its modules

• How to make an object comply with the Active Model API

required by Rails

• Rails’ validators and Ruby constant lookup

Chapter 2

Building Models
with Active Model

One of the Rails 3 features that stands out compared to previous ver-

sions is modularity. In the previous chapter, we talked briefly about

Abstract Controller and how it reduced code duplication in the Rails

source code since it’s decoupled from both Action Mailer and Action

Controller.

Now let’s look at Active Model. Similar to Abstract Controller, Active

Model was created to hold the behavior shared between Active Record

and Active Resource in modules that can be cherry-picked at will. It’s

also responsible for defining the API required by Rails controllers and

views, so any other ORM can use Active Model to ensure Rails behaves

exactly as it would with Active Record.

To explore this feature, let’s write a gem called Mail Form that will be

used in our controllers and views. Mail Form will receive a hash of

parameters sent by a POST request, validate them, and email them to

a specified email address. This abstraction will allow us to create fully

functional contact forms in just a couple of minutes!

2.1 Creating Our Model

Mail Form objects belong to the models part in the MVC architecture

because they receive the information sent through a form in the con-

troller and deliver it to a recipient specified by the business model.

Let’s design Mail Form like Active Record. We’ll provide a class named

MailForm::Base that contains the most common features we expect in a

Prepared exclusively for Uwe Ilgenstein

CREATING OUR MODEL 31

model, such as the ability to specify attributes and seamless integration

with Rails forms. As we did in the previous chapter, let’s use enginex to

create our new gem:

enginex mail_form

Our first feature is to implement a class method called attributes that

allows a developer to specify which attributes the Mail Form object con-

tains. Let’s create a model inside test/fixtures/sample_mail.rb as a fixture

to use in our tests:

Download mail_form/1_accessors/test/fixtures/sample_mail.rb

class SampleMail < MailForm::Base

attributes :name, :email

end

And then add a test to ensure the defined attributes name and email are

available as accessors in the Mail Form object:

Download mail_form/1_accessors/test/mail_form_test.rb

require 'test_helper'

require 'fixtures/sample_mail'

class MailFormTest < ActiveSupport::TestCase

test 'sample mail has name and email as attributes' do

sample = SampleMail.new

sample.name = "User"

assert_equal "User", sample.name

sample.email = "user@example.com"

assert_equal "user@example.com", sample.email

end

end

When we run the test suite with rake test, it fails because MailForm::Base

is not defined yet. Let’s define it in lib/mail_form/base.rb and write the

attributes method implementation:

Download mail_form/1_accessors/lib/mail_form/base.rb

module MailForm

class Base

def self.attributes(*names)

attr_accessor *names

end

end

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/mail_form/1_accessors/test/fixtures/sample_mail.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/1_accessors/test/mail_form_test.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/1_accessors/lib/mail_form/base.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=31

CREATING OUR MODEL 32

Our implementation delegates the creation of attributes to attr_accessor.

Before we run our test suite again, we need to ensure that MailForm::Base

is loaded. One option would be to explicitly require "mail_form/base" in

lib/mail_form.rb. However, we are going to use Ruby’s autoload instead:

Download mail_form/1_accessors/lib/mail_form.rb

module MailForm

autoload :Base, "mail_form/base"

end

autoload allows us to lazily load a class when it is first referenced. So

when we want to load MailForm, we annotate that it has a constant called

Base defined in mail_form/base.rb. When MailForm::Base is referenced for

the first time, Ruby loads the mail_form/base.rb file. This is frequently

used in Ruby extensions and Rails itself to allow a fast booting process,

because it does not need to load everything up front.

With autoload in place, our first test passes. We have a simple model

with attributes, but so far, we haven’t used Active Model’s goodness.

Let’s do that now.

Adding Attribute Methods

ActiveModel::AttributeMethods is a module that tracks all defined attri-

butes, allowing us to add a common behavior to all of them. Let’s use it

to dynamically define clear_ methods for all attributes. If our fixture has

both name and email attributes, we can use ActiveModel::AttributeMeth-

ods to define clear_name and clear_email without duplicating code. The

following test specifies exactly how these methods should work:

Download mail_form/2_attribute_prefix/test/mail_form_test.rb

test 'sample mail can clear attributes using clear_ prefix' do

sample = SampleMail.new

sample.name = "User"

sample.email = "user@example.com"

assert_equal "User", sample.name

assert_equal "user@example.com", sample.email

sample.clear_name

sample.clear_email

assert_nil sample.name

assert_nil sample.email

end

The clear_name and clear_email methods simply set the attribute value

back to nil. Let’s define these methods dynamically with ActiveModel::

AttributeMethods in four steps, all outlined in our new MailForm::Base

implementation shown here:

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/mail_form/1_accessors/lib/mail_form.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/2_attribute_prefix/test/mail_form_test.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=32

CREATING OUR MODEL 33

Download mail_form/2_attribute_prefix/lib/mail_form/base.rb

module MailForm

class Base

include ActiveModel::AttributeMethods # 1) attribute methods behavior

attribute_method_prefix 'clear_' # 2) clear_ is attribute prefix

def self.attributes(*names)

attr_accessor *names

3) Ask to define the prefix methods for the given attributes names

define_attribute_methods names

end

protected

4) Since we declared a "clear_" prefix, it expects to have a

"clear_attribute" method defined, which receives an attribute

name and implements the clearing logic.

def clear_attribute(attribute)

send("#{attribute}=", nil)

end

end

end

Run rake test, and all tests should be green again. ActiveModel::Attribute-

Methods uses method_missing to compile both the clear_name and clear_

email methods when they are first accessed. Their implementation sim-

ply invokes clear_attribute, passing the attribute name as a parameter.

If we want to define suffixes, instead of a prefix like clear_, we just need

to use the attribute_method_suffix method and implement the method

with the chosen suffix logic. As an example, let’s implement name? and

email? methods, which should return true if the respective attribute

value is present, as in the following test:

Download mail_form/3_attribute_suffix/test/mail_form_test.rb

test 'sample mail can ask if an attribute is present or not' do

sample = SampleMail.new

assert !sample.name?

sample.name = "User"

assert sample.name?

sample.email = ""

assert !sample.email?

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/mail_form/2_attribute_prefix/lib/mail_form/base.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/3_attribute_suffix/test/mail_form_test.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=33

CREATING OUR MODEL 34

When we run the test suite, our new test fails. To make it pass, let’s

define ? as a suffix, changing our MailForm::Base implementation to the

following:

Download mail_form/3_attribute_suffix/lib/mail_form/base.rb

module MailForm

class Base

include ActiveModel::AttributeMethods

attribute_method_prefix 'clear_'

1) Add the attribute suffix

attribute_method_suffix '?'

def self.attributes(*names)

attr_accessor *names

define_attribute_methods names

end

protected

def clear_attribute(attribute)

send("#{attribute}=", nil)

end

2) Implement the logic required by the '?' suffix

def attribute?(attribute)

send(attribute).present?

end

end

end

Now we have both prefix and suffix methods defined and the tests pass-

ing. But what if we want to define both the prefix and the suffix at

the same time? We could use the attribute_method_affix method, which

accepts a hash specifying both the prefix and the suffix.

Active Record uses attributes methods extensively. An example is the

attribute_before_type_cast method, which uses _before_type_cast as a suf-

fix to return raw data, as stored in the database. The dirty functional-

ity, which was moved to Active Model in Rails 3, is also built on top

of ActiveModel::AttributeMethods and defines a handful of methods like

attribute_changed?, reset_attribute!, and so on. You can check its source

code in the Rails repository.1

1. https://github.com/rails/rails/tree/3-0-stable/activemodel/lib/active_model/dirty.rb

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/mail_form/3_attribute_suffix/lib/mail_form/base.rb
https://github.com/rails/rails/tree/3-0-stable/activemodel/lib/active_model/dirty.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=34

CREATING OUR MODEL 35

Aiming for an Active Model–Compliant API

Even though we added attributes to our models to store form data,

we need to ensure that our model complies with the Active Model API;

otherwise, we won’t be able to use it in our controllers and views.

As usual, we are going to achieve this compliance through test-driven

development, except this time we won’t need to write the tests because

Rails already provides all of them in a module called ActiveModel::Lint::

Tests. When included, this module defines several tests asserting that

each method required in an Active Model–compliant API exists. Each

of these tests, in order to run, expects an instance variable named

@model to return the object we want to assert against. In our case,

@model should contain an instance of SampleMail, which will be compli-

ant if MailForm::Base is compliant. So, let’s create a new test file called

test/compliance_test.rb with the following:

Download mail_form/4_compliance/test/compliance_test.rb

require 'test_helper'

require 'fixtures/sample_mail'

class ComplianceTest < ActiveSupport::TestCase

include ActiveModel::Lint::Tests

def setup

@model = SampleMail.new

end

end

When we run rake test, we get several failures, the first of which looks

like this:

The object should respond_to to_model.

<false> is not true.

Rails controllers and views helpers, before invoking any method in our

models, first call to_model and manipulate the returned result instead

of the model directly. This allows ORM implementations that do not

want to add Active Model methods to their API to return a proxy object

where these methods are in fact defined. In our case, we want to add

Active Model methods directly to MailForm::Base. Consequently, our to_

model implementation should simply return self, as shown here:

def to_model

self

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/mail_form/4_compliance/test/compliance_test.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=35

CREATING OUR MODEL 36

Although we could add this method to MailForm::Base, we are not going

to implement it ourselves. Instead, let’s include ActiveModel::Conversion,

which implements to_model exactly as we discussed and two other

methods required by Active Model as well: to_key and to_param.

The to_key method should return an array of keys that uniquely identi-

fies the model, if any exists, and it is used by dom_id in our views. The

dom_id method was introduced in Rails 2.0 along with dom_class and a

bunch of other helpers to better organize our views based on some con-

ventions. For example, div_for(@post), where @post is an Active Record

instance with an ID of 37, relies on both these methods to create a div

where the ID attribute is equal to post-37 and the class attribute is post.

For Active Record, dom_id simply returns an array with the record ID

from the database.

On the other hand, to_param is used in routing and can be overwritten

in any model to generate a unique URL for that model. When you invoke

post_path(@post), Rails calls to_param in the @post object and uses its

result to generate the final URL.

Because MailForm::Base objects are never persisted, they aren’t uniquely

identified, and both to_key and to_param should simply return nil, which

is the default behavior provided by the ActiveModel::Conversion module.

Let’s include it inside the MailForm::Base class definition:

Download mail_form/4_compliance/lib/mail_form/base.rb

module MailForm

class Base

include ActiveModel::Conversion

When we include this module and run rake test, we get different errors

with the following messages:

The model should respond to model_name.

<false> is not true.

The model should respond to errors.

<false> is not true.

NameError: undefined local variable or method `attributes'

To fix the first failing test, we need to extend the MailForm::Base class

with ActiveModel::Naming:

Download mail_form/4_compliance/lib/mail_form/base.rb

module MailForm

class Base

include ActiveModel::Conversion

extend ActiveModel::Naming

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/mail_form/4_compliance/lib/mail_form/base.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/4_compliance/lib/mail_form/base.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=36

CREATING OUR MODEL 37

After extending our class with ActiveModel::Naming, it now responds to

a method called model_name that returns an instance of ActiveModel::

Name, which is a subclass of String. For all effects, ActiveModel::Name

behaves as a string but provides a few extra methods such as human,

singular, and others. Let’s add a small test case to our suite showing

these methods and what they return:

Download mail_form/5_extensions/test/compliance_test.rb

test "model_name exposes singular and human name" do

assert_equal "sample_mail", model.class.model_name.singular

assert_equal "Sample mail", model.class.model_name.human

end

This is similar to the behavior Active Record exhibits on Rails 3. The

only difference is that Active Record supports internationalization

(I18n) and Mail Form does not. Luckily, that can be easily fixed by

extending MailForm::Base with ActiveModel::Translation. Let’s write a test

first:

Download mail_form/5_extensions/test/compliance_test.rb

test "model_name.human uses I18n" do

begin

I18n.backend.store_translations :en,

:activemodel => { :models => { :sample_mail => "My Sample Mail" } }

assert_equal "My Sample Mail", model.class.model_name.human

ensure

I18n.reload!

end

end

The test adds a new translation to the I18n backend that contains the

desired human name for the SampleMail class. We need to wrap the code

in the begin ... ensure clause since we need to guarantee the I18n back-

end is reloaded, removing the translation we just stored. Let’s update

MailForm::Base to make the new test pass:

Download mail_form/4_compliance/lib/mail_form/base.rb

module MailForm

class Base

include ActiveModel::Conversion

extend ActiveModel::Naming

extend ActiveModel::Translation

After adding naming and translation behaviors to our model, rake test

returns fewer failures, showing that we are moving forward. This time,

the failures should contain one of these two messages:

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/mail_form/5_extensions/test/compliance_test.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/5_extensions/test/compliance_test.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/4_compliance/lib/mail_form/base.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=37

CREATING OUR MODEL 38

The model should respond to errors.

<false> is not true.

NameError: undefined local variable or method `attributes'

The first failure is related to validations. Active Model does not say

anything about validation macros (such as validates_presence_of), but it

requires us to define a method named errors, which returns a Hash, and

each value in this hash is an Array.

To handle the validations error, we just need to include ActiveModel::

Validations in our model:

Download mail_form/4_compliance/lib/mail_form/base.rb

module MailForm

class Base

include ActiveModel::Conversion

extend ActiveModel::Naming

extend ActiveModel::Translation

include ActiveModel::Validations

Now our model responds to errors and valid?. Both methods are part of

the API required for Active Model compliance and have default behavior

exactly as in Active Record.

Besides those methods, ActiveModel::Validations also adds several valida-

tion macros such as validates_format_of, validates_inclusion_of, and even

the new validates method. Since Rails 3 has several improvements on

the validations side, we’ll take a deeper look at these later in this

chapter.

For now, let’s run rake test and see what is left to make our test suite

green again:

NameError: undefined local variable or method `attributes'

lib/active_model/attribute_methods.rb:364:in `method_missing'

lib/active_model/attribute_methods.rb:386:in `attribute_method?'

lib/active_model/attribute_methods.rb:394:in `match_attribute_method?'

lib/active_model/attribute_methods.rb:393:in `each'

lib/active_model/attribute_methods.rb:393:in `match_attribute_method?'

lib/active_model/attribute_methods.rb:378:in `respond_to?'

lib/active_model/lint.rb:63:in `test_persisted?'

This is not a test failure but a Ruby error telling us that something

unexpected happened. The only clue we can get from the backtrace

is that it’s related to the ActiveModel::AttributeMethods module. Fortu-

nately, by taking a look at the module documentation,2 we discover

2. https://github.com/rails/rails/tree/3-0-stable/activemodel/lib/active_model/attribute_methods.rb

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/mail_form/4_compliance/lib/mail_form/base.rb
https://github.com/rails/rails/tree/3-0-stable/activemodel/lib/active_model/attribute_methods.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=38

CREATING OUR MODEL 39

that whenever we include ActiveModel::AttributeMethods in our models, it

requires us to implement a method named attributes, which we haven’t.

The error appears at this point only because ActiveModel::Lint::Tests

makes use of respond_to?, which fails when you have the ActiveModel::

AttributeMethods module included but the attributes method is not imple-

mented. If you use Active Record, you might have used the attributes

method. It returns a hash with the attribute names as keys and their

respective values. Implementing it in our model requires two steps: first

we need to track all attributes defined by the developer, and then we

need to use them to create an attributes hash. Let’s write a test case:

Download mail_form/5_extensions/test/mail_form_test.rb

test "can retrieve all attributes values" do

sample = SampleMail.new

sample.name = "John Doe"

sample.email = "john.doe@example.com"

assert_equal "John Doe", sample.attributes["name"]

assert_equal "john.doe@example.com", sample.attributes["email"]

end

To make the test pass, our MailForm::Base should look like the following:

Download mail_form/5_extensions/lib/mail_form/base.rb

module MailForm

class Base

include ActiveModel::Conversion

extend ActiveModel::Naming

extend ActiveModel::Translation

include ActiveModel::Validations

include ActiveModel::AttributeMethods

1) Define a class inheritable attribute named _attributes

Let's use underscore to mark this method as internal to our gem

class_attribute :_attributes

self._attributes = []

attribute_method_prefix 'clear_'

attribute_method_suffix '?'

def self.attributes(*names)

attr_accessor *names

define_attribute_methods names

2) Add declared attributes to the list

self._attributes += names

end

3) Create the attributes hash by iterating the list

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/mail_form/5_extensions/test/mail_form_test.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/5_extensions/lib/mail_form/base.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=39

CREATING OUR MODEL 40

def attributes

self._attributes.inject({}) do |hash, attr|

hash[attr.to_s] = send(attr)

hash

end

end

protected

def clear_attribute(attribute)

send("#{attribute}=", nil)

end

def attribute?(attribute)

send(attribute).present?

end

end

end

To allow our MailForm::Base to be inheritable, our implementation uses

the class_attribute method from Active Support to define the array that

holds our attributes list. The class_attribute implementation ensures a

child class has the same values as the parent but guarantees that set-

ting a value in the child won’t propagate to the parent.

When we run the test suite once again, our new test will pass, and the

compliance suite now shows us a different error:

1) Failure:

test_persisted?(ComplianceTest)

The model should respond to persisted?.

Now that we fixed the attributes error, we can finally see what’s left to

have our model fully compliant with the Active Model API: we just need

to define the persisted? method.

The persisted? method is used by both our controllers and our views

under different circumstances. For instance, whenever you do form_

for(@model), it checks whether the model is persisted. If positive, it cre-

ates a form that does a PUT request; if not, it should do a POST request.

The same happens in url_for when it generates a URL based on your

model.

In Active Record, the object is persisted if it’s saved in the database,

in other words, if it’s neither a new record nor destroyed. However, in

our case, our object won’t be saved in any database, and consequently

persisted? should always return false.

Let’s add the persisted? method to our MailForm::Base implementation:

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=40

CREATING OUR MODEL 41

Download mail_form/6_delivery/lib/mail_form/base.rb

def persisted?

false

end

This time, after running rake test, all tests pass! This means our model

complies with the Active Model API. Well done!

Delivering the Form

The next step in our Mail Form implementation is to add the logic that

delivers an email with the parameters sent through a form. Let’s start

by adding a failing test to test/mail_form_test.rb:

Download mail_form/6_delivery/test/mail_form_test.rb

setup do

ActionMailer::Base.deliveries.clear

end

test "delivers an email with attributes" do

sample = SampleMail.new

Simulate data from the form

sample.email = "user@example.com"

sample.deliver

assert_equal 1, ActionMailer::Base.deliveries.size

mail = ActionMailer::Base.deliveries.last

assert_equal ["user@example.com"], mail.from

assert_match /Email: user@example\.com/, mail.body.encoded

end

From the test case, we can see that to send the email we need to invoke

a method called deliver in our MailForm::Base object. The delivered email

has as the sender the same value as the email attribute in our model.

The body contains each attribute and their respective values.

Notice that in the mail.body assertion we need to call encoded (or to_s)

to retrieve the proper value. This was not required in previous Rails

versions, but now Rails 3 depends on the Mail3 gem instead of TMail,

which provides a more robust API when dealing with mails.

When we run the test we just added, we get a failure because the deliver

method does not exist yet. Because our model has the concept of valid-

3. https://github.com/mikel/mail

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/mail_form/6_delivery/lib/mail_form/base.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/6_delivery/test/mail_form_test.rb
https://github.com/mikel/mail
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=41

CREATING OUR MODEL 42

ity from ActiveModel::Validations, the deliver method should just deliver

the email if the Mail Form object is valid?. Let’s define it:

Download mail_form/6_delivery/lib/mail_form/base.rb

def deliver

if valid?

MailForm::Notifier.contact(self).deliver

else

false

end

end

The class responsible for creating and delivering the email is MailForm::

Notifier. Let’s implement it using the Action Mailer API:

Download mail_form/6_delivery/lib/mail_form/notifier.rb

module MailForm

class Notifier < ActionMailer::Base

append_view_path File.expand_path("../../views", __FILE__)

def contact(mail_form)

@mail_form = mail_form

mail(mail_form.headers)

end

end

end

The contact action in our mailer creates an assign called @mail_form

and then invokes the headers method in the given Mail Form object.

This method should return a hash with email data as keys like :to,

:from, and :subject and should not be defined in MailForm::Base but in

each child class. This is a simple but powerful API contract that allows

a developer to customize the email delivery without a need to redefine

or monkey-patch the Notifier class.

Our MailForm::Notifier also calls append_view_path, which adds lib/views

inside our gem folder as a new location to search for templates. The last

step before we run the test suite again is to autoload our new class:

Download mail_form/6_delivery/lib/mail_form.rb

autoload :Notifier, 'mail_form/notifier'

Then, let’s define the headers method in the SampleMail class:

Download mail_form/6_delivery/test/fixtures/sample_mail.rb

def headers

{ :to => "recipient@example.com", :from => self.email }

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/mail_form/6_delivery/lib/mail_form/base.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/6_delivery/lib/mail_form/notifier.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/6_delivery/lib/mail_form.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/6_delivery/test/fixtures/sample_mail.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=42

CREATING OUR MODEL 43

Now when we run rake test, it fails with the following message:

1) Failure:

test_delivers_an_email_with_attributes(MailFormTest)

<""> expected to be =~

</Email: user@example\.com/>.

This is expected since we haven’t added a template to our mailer and

the email body is blank. The mail template will show the message sub-

ject and print all attributes and their respective values:

Download mail_form/6_delivery/lib/views/mail_form/notifier/contact.text.erb

<%= message.subject %>

<% @mail_form.attributes.each do |key, value| -%>

<%= @mail_form.class.human_attribute_name(key) %>: <%= value %>

<% end -%>

After running rake test, all tests should be green again, and our Mail

Form implementation is finished.

Whenever we need to create a contact form, we just create a class that

inherits from MailForm::Base, define our attributes and the email headers,

and we are ready to go! To ensure it works exactly as we expect, let’s

test the whole process with an integration test.

Writing Integration Tests

To create an integration test for our Mail Form implementation, let’s

use the vendored Rails application in test/dummy and the Capybara

helpers defined in ActiveSupport::IntegrationCase, like we did in the pre-

vious chapter:

Download mail_form/6_delivery/test/integration/navigation_test.rb

require 'test_helper'

class NavigationTest < ActiveSupport::IntegrationCase

setup do

ActionMailer::Base.deliveries.clear

end

test "sends an e-mail after filling the contact form" do

visit "/"

fill_in "Name", :with => "John Doe"

fill_in "Email", :with => "john.doe@example.com"

fill_in "Message", :with => "MailForm rocks!"

click_button "Deliver"

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/mail_form/6_delivery/lib/views/mail_form/notifier/contact.text.erb
http://media.pragprog.com/titles/jvrails/code/mail_form/6_delivery/test/integration/navigation_test.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=43

CREATING OUR MODEL 44

assert_match "Your message was successfully sent.", page.body

assert_equal 1, ActionMailer::Base.deliveries.size

mail = ActionMailer::Base.deliveries.last

assert_equal ["john.doe@example.com"], mail.from

assert_equal ["recipient@example.com"], mail.to

assert_match /Message: MailForm rocks!/, mail.body.encoded

end

end

The integration test accesses the root path, which returns a form with

name, email, and message fields. On submitting the form, the server

delivers an email to a configured recipient with the written message

and shows a success message to the user. To make the test pass, let’s

add the model, controller, views, and routes, starting with the latter:

Download mail_form/6_delivery/test/dummy/config/routes.rb

Dummy::Application.routes.draw do

resources :contact_forms, :only => :create

root :to => "contact_forms#new"

end

The controller and view follow next:

Download mail_form/6_delivery/test/dummy/app/controllers/contact_forms_controller.rb

class ContactFormsController < ApplicationController

def new

@contact_form = ContactForm.new

end

def create

@contact_form = ContactForm.new(params[:contact_form])

if @contact_form.deliver

redirect_to root_url, :notice => "Your message was successfully sent."

else

render :action => "new"

end

end

end

Download mail_form/6_delivery/test/dummy/app/views/contact_forms/new.html.erb

<h1>New Contact Form</h1>

<%= form_for(@contact_form) do |f| %>

<% if @contact_form.errors.any? %>

<div id="errorExplanation">

<h2>Oops, something went wrong:</h2>

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/mail_form/6_delivery/test/dummy/config/routes.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/6_delivery/test/dummy/app/controllers/contact_forms_controller.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/6_delivery/test/dummy/app/views/contact_forms/new.html.erb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=44

CREATING OUR MODEL 45

<% @contact_form.errors.full_messages.each do |msg| %>

<%= msg %>

<% end %>

</div>

<% end %>

<div class="field">

<%= f.label :name %>

<%= f.text_field :name %>

</div>

<div class="field">

<%= f.label :email %>

<%= f.text_field :email %>

</div>

<div class="field">

<%= f.label :message %>

<%= f.text_field :message %>

</div>

<div class="actions">

<%= f.submit "Deliver" %>

</div>

<% end %>

And finally here’s the model:

Download mail_form/6_delivery/test/dummy/app/models/contact_form.rb

class ContactForm < MailForm::Base

attributes :name, :email, :message

def headers

{ :to => "recipient@example.com", :from => self.email }

end

end

Because our tests use flash messages, we need to add them to the

layout, just before the yield call:

Download mail_form/6_delivery/test/dummy/app/views/layouts/application.html.erb

<p style="color: green"><%= notice %></p>

With everything in place, let’s run the test suite and...get an unexpected

failure. Unless you are using Ruby 1.9.2, you will see the following error

message:

1) Error:

test_sends_an_e-mail_after_filling_the_contact_form(NavigationTest):

ArgumentError: wrong number of arguments (1 for 0)

app/controllers/contact_forms_controller.rb:7:in `initialize'

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/mail_form/6_delivery/test/dummy/app/models/contact_form.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/6_delivery/test/dummy/app/views/layouts/application.html.erb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=45

TAKING IT TO THE NEXT LEVEL 46

If you are using 1.9.2, you won’t get an ArgumentError, but the test will

fail nonetheless. The failure occurs because the initialize method in Mail-

Form::Base, unlike Active Record, does not expect a hash as an argu-

ment. Notice that an Active Model–compliant API does not say anything

about how our models should be initialized. Let’s implement an initial-

ize method, which receives a hash as an argument and sets attribute

values:

Download mail_form/7_final/lib/mail_form/base.rb

def initialize(attributes = {})

attributes.each do |attr, value|

self.send("#{attr}=", value)

end unless attributes.blank?

end

After defining the previous method, our integration test works, showing

that everything works as expected. Remember that if you go to the ven-

dored application inside test/dummy, you can run rails s as in any other

Rails application. Feel free to start your server, add some validations to

your ContactForm class, and have some fun with it.

2.2 Taking It to the Next Level

In the previous section, we wrote our Mail Form gem with some basic

features and added some integration testing to ensure it works. How-

ever, we can do a lot more with Active Model. Let’s take a look at some

examples.

Validators

In previous Rails versions, validation macros were monolithic blocks of

code. However, Rails 3 introduces the concept of a validator, where

each validation is a class. The previous validation macros, such as

validates_presence_of, now delegate to their validator. Let’s see the val-

idates_presence_of macro as an example:

Download rails/activemodel/lib/active_model/validations/presence.rb

def validates_presence_of(*attr_names)

validates_with PresenceValidator, _merge_attributes(attr_names)

end

The validates_with method is responsible for initializing the given Active-

Model::Validations::PresenceValidator class, while _merge_attributes con-

verts the given attributes to a hash. When you invoke the following:

validates_presence_of :name

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/mail_form/7_final/lib/mail_form/base.rb
http://media.pragprog.com/titles/jvrails/code/rails/activemodel/lib/active_model/validations/presence.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=46

TAKING IT TO THE NEXT LEVEL 47

you’re actually doing this:

validates_with PresenceValidator, :attributes => [:name]

which is roughly the same as the following:

validate PresenceValidator.new(:attributes => [:name])

Along with validators, Rails 3 also added the validates method, which

allows you to set several validations on one attribute in just one method

call:

validates :name, :presence => true

This, again, at the end is just the same as the following:

validate PresenceValidator.new(:attributes => [:name])

The question is, how does Rails know that the :presence key should use

the PresenceValidator? Simple: it first converts the :presence key to "Pres-

enceValidator" and then tries to find a constant named PresenceValidator

in the current class, just like the following:

"#{key.to_s.camelize}Validator".constantize

This is important to discuss because now we can add any validator

to any class, relying solely on Ruby’s constant lookup. To understand

exactly how it works, let’s start a new irb session and type the following:

module Foo

module Bar

end

end

class Baz

include Foo

end

Baz::Bar # => Foo::Bar

Notice how the last line of the script in the previous code returns

Foo::Bar even if Bar is not defined inside the Baz class. This happens

because whenever a constant is looked up, Ruby searches inside all

objects in the ancestor chain. Since Foo is included in Baz, Foo is an

ancestor of Baz, allowing Ruby to find the Foo::Bar constant (you can

check Baz ancestors by typing Baz.ancestors in the previous irb session).

This means we can add an :absence option to the validates method of

any class by simply implementing the AbsenceValidator inside a module

and including this module in the desired classes.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=47

TAKING IT TO THE NEXT LEVEL 48

To showcase how we can use this in practice, we are going to implement

an absence validator in our MailForm::Base. Since a lot of spam usually

comes through contact forms, we are going to use the absence validator

as a honey pot.

The honey pot works by creating a field, such as nickname, and hiding

it with CSS. This way, humans do not see the field and consequently do

not fill it in, while robots will fill it in like any other field. So whenever

the nickname value is present, the email should not be sent because it

is definitely spam.

Let’s start by writing a simple test for it:

Download mail_form/7_final/test/mail_form_test.rb

test "validates absence of nickname" do

sample = SampleMail.new(:nickname => "Spam")

assert !sample.valid?

assert_equal ["is invalid"], sample.errors[:nickname]

end

The test shows the record must be invalid if the nickname field contains

any value. So, let’s add the nickname field with :absence validation to

our SampleMail object:

Download mail_form/7_final/test/fixtures/sample_mail.rb

attributes :nickname

validates :nickname, :absence => true

When we run rake test, we will get a failure, because SampleMail can

no longer be loaded because AbsenceValidator is not defined anywhere.

Let’s create it:

Download mail_form/7_final/lib/mail_form/validators.rb

module MailForm

module Validators

class AbsenceValidator < ActiveModel::EachValidator

def validate_each(record, attribute, value)

record.errors.add(attribute, :invalid, options) unless value.blank?

end

end

end

end

Our validator inherits from EachValidator. For each attribute given on

initialization, EachValidator calls the validate_each method with the

record, the attribute, and its respective value. For each attribute, we add

an error message, unless the value is blank.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/mail_form/7_final/test/mail_form_test.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/7_final/test/fixtures/sample_mail.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/7_final/lib/mail_form/validators.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=48

TAKING IT TO THE NEXT LEVEL 49

Next, let’s include MailForm::Validators in MailForm::Base:

Download mail_form/7_final/lib/mail_form/base.rb

include MailForm::Validators

This will add MailForm::Validators to the MailForm::Base ancestors chain.

So, whenever we give :absence as a key to validates, it will search for an

AbsenceValidator constant, find it inside MailForm::Validators, and initial-

ize it, similar to what it did with the PresenceValidator.

To ensure it really works, we just need to autoload our validators con-

tainer:

Download mail_form/7_final/lib/mail_form.rb

autoload :Validators, 'mail_form/validators'

Run rake test, and all tests should pass again. The beauty of this imple-

mentation is that adding the :absence key to validates did not require us

to register the option anywhere. Those options are discovered at run-

time using Ruby’s constant lookup.

Add this new nickname field to your contact form views and hide it with

some CSS, and we are ready to stop some bots. It’s up to you to write

an integration test for it, since we still have some more Active Model

investigation to do.

Callbacks

Wouldn’t it be cool if we could provide hooks around the deliver method

so we could add some behavior before and after the delivery? This is

quite easy to achieve with ActiveModel::Callbacks. First, let’s create a

test case with the desired functionality:

Download mail_form/7_final/test/mail_form_test.rb

test "provides before and after deliver hooks" do

sample = SampleMail.new

sample.deliver

assert_equal [:before, :after], sample.callbacks

end

The test calls the deliver method and asserts that one before and one

after callback were executed. Let’s declare those callbacks in our

SampleMail:

Download mail_form/7_final/test/fixtures/sample_mail.rb

before_deliver do

callbacks << :before

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/mail_form/7_final/lib/mail_form/base.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/7_final/lib/mail_form.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/7_final/test/mail_form_test.rb
http://media.pragprog.com/titles/jvrails/code/mail_form/7_final/test/fixtures/sample_mail.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=49

WRAPPING UP 50

after_deliver do

callbacks << :after

end

def callbacks

@callbacks ||= []

end

Finally, let’s add support to callbacks in MailForm::Base. This can be done

in three steps: extend our class with ActiveModel::Callbacks functional-

ity, then define our callbacks, and finally overwrite deliver implementa-

tion to run the callbacks before and after delivering:

Download mail_form/7_final/lib/mail_form/base.rb

1) Add callbacks behavior

extend ActiveModel::Callbacks

2) Define the callbacks. The line below will create both before_deliver

and after_deliver callbacks with the same semantics as in Active Record

define_model_callbacks :deliver

3) Change deliver to run the callbacks

def deliver

if valid?

_run_deliver_callbacks do

MailForm::Notifier.contact(self).deliver

end

else

false

end

end

As Active Record callbacks, you can give procs, strings, symbols, and

any object that responds to the callback name. Feel free to try these

options!

2.3 Wrapping Up

In this chapter, we learned how to use Active Model to quickly create

our own models that play seamlessly with Rails controllers and views.

We talked about ActiveModel::AttributeMethods, ActiveModel::Conversion,

ActiveModel::Naming, ActiveModel::Translation, ActiveModel::Validations, and

finally ActiveModel::Callbacks. We also dove into Rails 3 validators and

how we can easily extend the validates method behavior.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/mail_form/7_final/lib/mail_form/base.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=50

WRAPPING UP 51

Even after all that, Active Model still has more to offer. Take a look at

ActiveModel::Dirty, ActiveModel::MassAssignmentSecurity, ActiveModel::

Observing, and ActiveModel::Serialization as well. They allow us to bring

dirty attributes, accessible attributes, observers, and serializers (such

as to_xml and to_json), as in Active Record, right into our models.

Finally, if you enjoyed Mail Form here, check out the Mail Form by

Plataforma Tec,4 which is a production-ready gem, created with the

same concepts explored in this chapter. It also has additional features,

such as attachment handling and the ability to append request infor-

mation.

In the next chapter, let’s go back to studying the Rails rendering stack

and extend it to look for a template in the database instead of the

filesystem, keeping an eye on performance.

4. https://github.com/plataformatec/mail_form

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

https://github.com/plataformatec/mail_form
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=51

In this chapter, we’ll see

• How to customize Rails rendering stack to look up templates

from the database

• How Ruby Hash lookup works

• How to speed up controllers with ActionController::Metal

Chapter 3

Retrieving View Templates
from Custom Stores

In Section 1.3, Understanding Rails Rendering Stack, on page 22, we

analyzed Rails’ rendering stack and learned that its main responsi-

bility is to normalize options and send them to ActionView::Base. Each

controller holds an instance of ActionView::Base called view_context that

receives those normalized options through the render method and uses

them to find, compile, and render a specific template.

At first, you may find view context to be an awkward name, but there is

a good explanation behind it. In a Rails 3 application, when we render a

template, that template is read from the filesystem, and its code is com-

piled to Ruby code. This Ruby code is executed within the context of an

object, and in Rails 3, this is the view_context object. All helpers avail-

able in our templates, such as form_for and link_to, are actually defined

in modules included in the view_context object.

Upon initialization, the view_context also receives from the controller an

object called view_paths as an argument. The view_paths is a collection

of objects responsible for finding templates given a set of conditions.

All controllers in a Rails application have one view path by default,

which is a filesystem path pointing to app/views. Given a set of con-

ditions like template name, locale, and format, this view path finds a

specific template under app/views. For instance, whenever we have an

HTML request at the index action of a UsersController, this default view

path will attempt to pick a template at app/views/users/index.html.*. If the

desired template is found, it’s then compiled and rendered, as shown

in Figure 3.1, on the next page.

Prepared exclusively for Uwe Ilgenstein

CHAPTER 3. RETRIEVING VIEW TEMPLATES FROM CUSTOM STORES 53

@controller @view_context @view_paths

request

render find

templaterendered
template

response

Figure 3.1: Rendering workflow between controller, view context, and

view path

In Section 2.1, Delivering the Form, on page 41, we manipulated the

view path in our MailForm::Notifier object to include another path in the

template lookup:

module MailForm

class Notifier < ActionMailer::Base

append_view_path File.expand_path("../../views", __FILE__)

end

end

The previous code is basically expressing that if a template cannot

be found under app/views, it should look within the lib/views directory

inside our gem next.

Rails has allowed us to customize template compiling and rendering

since its first releases (we will see how in the next chapter). However, the

ability to customize and handle several view paths was introduced only

in Rails 2.0. Rails 3 improves upon that by allowing us to encapsulate

in any object the logic that finds a template.

This improvement means we are no longer forced to store view tem-

plates in the filesystem. We can now store them anywhere we want as

long as we provide an object that knows how to find them. We call this

object the template resolver, and it must comply with the Resolver API.

Rails 3 provides an abstract resolver implementation, called Action-

View::Resolver. In this chapter we’re going to use it to create a resolver

that uses the database as a template store, so we can store our pages in

the database and edit them through a web interface using our favorite

template handler (such as Liquid, ERb, or Haml). The nice thing about

this is that we need only one scaffold and a few lines of code!

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=53

SETTING UP A SQLRESOLVER 54

3.1 Setting Up a SqlResolver

This time, instead of using enginex to create and implement the desired

functionality as a gem, we will develop the template management sys-

tem by building a Rails application called templater. So, let’s create it

using the command line:

rails new templater

Next, let’s define the model that will hold templates in the database

using the Rails scaffold generator:

bundle exec rails generate scaffold SqlTemplate body:text path:string \

format:string locale:string handler:string partial:boolean

The body attribute is a text column used to store the whole template,

the path should store a string similar to a filesystem path (for instance

the index action under UsersController will have users/index as the path),

format and locale hold the template format and its locale, the handler

stores the template handler (for example, Liquid, ERb, and Haml), and

finally partial tells us whether the stored template is a partial.

Before executing the created migration, let’s just make one change in

it, setting false as the default value for the partial attribute:

t.boolean :partial, :default => false

And now we are ready to run our migrations:

rake db:migrate

So far, no surprises. Next, let’s create a template resolver, which will use

the SqlTemplate model to read templates from the database and expose

them according to the Resolver API described next.

The Resolver API

The Resolver API is composed of a single method, called find_all, which

should return an array of templates and has the following signature:

def find_all(name, prefix, partial, details, cache_key)

For an HTML request at the index action of a UsersController, those argu-

ments are exactly as shown here:

find_all("index", "users", false, { :formats => [:html],

:locale => [:en, :en], :handlers => [:erb, :builder, :rjs] }, nil)

For this simple request, we can see that name maps to the action name,

while prefix refers to the controller name. Next, partial is a boolean that

tells whether the template being rendered is a partial, and details is a

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=54

SETTING UP A SQLRESOLVER 55

hash with extra information for the lookup, such as the request for-

mats, the current I18n locale followed by the default locale, and the

available template handlers. For now, we’ll consider that this request

happened in the development environment, where caching is disabled,

and so the cache_key is nil. We will discuss caching later.

Rails 3 provides an abstract resolver implementation, called Action-

View::Resolver, which we are going to use as the base for our resolver.

Its source code is shown next, but for now, let’s simply focus only on

the find_all and find_template methods:

Download rails/actionpack/lib/action_view/template/resolver.rb

module ActionView

class Resolver

def initialize

@cached = Hash.new { |h1,k1| h1[k1] =

Hash.new { |h2,k2| h2[k2] = Hash.new { |h3, k3| h3[k3] = {} } } }

end

def clear_cache

@cached.clear

end

Normalizes the arguments and passes it on to find_template.

def find_all(name, prefix=nil, partial=false, details={}, key=nil)

cached(key, prefix, name, partial) do

find_templates(name, prefix, partial, details)

end

end

private

def caching?

@caching ||= Rails.application.config.cache_classes

end

def find_templates(name, prefix, partial, details)

raise NotImplementedError

end

def cached(key, prefix, name, partial)

return yield unless key && caching?

@cached[key][prefix][name][partial] ||= yield

end

end

end

The find_all method implements a basic caching mechanism where the

block given to cached is yielded if no previous entry exists in the cache.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/rails/actionpack/lib/action_view/template/resolver.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=55

SETTING UP A SQLRESOLVER 56

@view_context @view_paths @resolver SqlTemplate Database

find find where.all
query

hash
recordtemplatetemplate

@controller

request

render

rendered
template

response

Figure 3.2: Template lookup with SqlTemplate

And, if in fact no entry exists in the cache, find_templates is invoked. The

find_templates method raises a NotImplementedError, indicating it should

actually be implemented in child classes.

Next, inherit from ActionView::Resolver and implement the find_template

method using the SqlTemplate API to retrieve templates from the data-

base, resulting in the same template lookup, as shown in Figure 3.2.

Writing the Code

Let’s call our resolver implementation SqlTemplate::Resolver and imple-

ment it in three main steps. The first receives the name, prefix, partial,

and details as arguments and normalizes them. From the normalized

arguments, we create a SQL statement and query the database. This

query returns an array of records from the database that is then used

to create an array of ActionView::Template instances.

Let’s write a test first to demonstrate the functionality we want.

Download templater/1_resolvers/test/unit/sql_template_test.rb

require 'test_helper'

class SqlTemplateTest < ActiveSupport::TestCase

test "resolver returns a template with the saved body" do

resolver = SqlTemplate::Resolver.new

details = { :formats => [:html], :locale => [:en], :handlers => [:erb] }

1) Assert our resolver cannot find any template as the database is empty

find_all(name, prefix, partial, details)

assert resolver.find_all("index", "posts", false, details).empty?

2) Create a template in the database

SqlTemplate.create!(

:body => "<%= 'Hi from SqlTemplate!' %>",

:path => "posts/index",

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/templater/1_resolvers/test/unit/sql_template_test.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=56

SETTING UP A SQLRESOLVER 57

:format => "html",

:locale => "en",

:handler => "erb",

:partial => false)

3) Assert that a template can now be found

template = resolver.find_all("index", "posts", false, details).first

assert_kind_of ActionView::Template, template

4) Assert specific information about the found template

assert_equal "<%= 'Hi from SqlTemplate!' %>", template.source

assert_match /SqlTemplate - \d+ - "posts\/index"/, template.identifier

assert_equal ActionView::Template::Handlers::ERB, template.handler

assert_equal [:html], template.formats

assert_equal "posts/index", template.virtual_path

end

end

The find method in our resolver should return an ActionView::Template

instance. This template instance is initialized as follows:

ActionView::Template.new(source, identifier, handler, details)

The source is the body of the template stored in the database. The iden-

tifier is an unique string used to represent the template. We will ensure

this uniqueness by adding the template ID in the database to it.

The handler is the object responsible for rendering the template. This

object is not a string—like we stored in the database—but an object that

is retrieved using the method registered_template_handler from Action-

View::Template:

ActionView::Template.registered_template_handler("erb")

=> ActionView::Template::Handlers::ERB

Finally, the last parameter given on template initialization is a hash

that should contain three details: the :format of the template found, the

last time the template was updated as :updated_at, and a :virtual_path

that represents the template.

Since templates are no longer required to be in the filesystem, they

do not necessarily have a path, and this breaks a couple of Rails fea-

tures that depend explicitly on it. One example is the I18n shortcut

t(".message") inside your views. It uses the template filesystem path

to retrieve the translation, so whenever you are inside a template at

app/views/users/index, the shortcut attempts to find the I18n translation

at "users.index.message".

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=57

SETTING UP A SQLRESOLVER 58

To circumvent this need for a path, Rails 3 introduced the :virtual_path.

You can store your templates anywhere and give them any source or

any identifier, but you need to provide a :virtual_path that represents

what the path would be if this template was stored in the filesystem.

This allows t(".message") to work as expected by setting the virtual path

to be users/index.

With tests in place and an understanding of how templates are initial-

ized, let’s implement our resolver by inheriting from ActionView::Resolver

and implementing find_template.

It’s important to consider in our resolver that the order of the given

details matters. In other words, if the locale array contains [:es, :en], a

template in Spanish (:es) has higher preference than the one in English,

in case both exist. To solve this in our resolver, one option is to generate

an order clause for each detail and get the result properly sorted from

the database. Another option is to sort the returned templates in Rails.

However, for simplicity, instead of passing all locales and formats to the

SQL query, let’s simply pick the first ones from the array.

Without further ado, let’s implement our resolver:

Download templater/1_resolvers/app/models/sql_template.rb

class SqlTemplate < ActiveRecord::Base

validates :body, :path, :presence => true

validates :format, :inclusion => Mime::SET.symbols.map(&:to_s)

validates :locale, :inclusion => I18n.available_locales.map(&:to_s)

validates :handler, :inclusion =>

ActionView::Template::Handlers.extensions.map(&:to_s)

class Resolver < ActionView::Resolver

protected

def find_templates(name, prefix, partial, details)

conditions = {

:path => normalize_path(name, prefix),

:locale => normalize_array(details[:locale]).first,

:format => normalize_array(details[:formats]).first,

:handler => normalize_array(details[:handlers]),

:partial => partial || false

}

::SqlTemplate.where(conditions).map do |record|

initialize_template(record)

end

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/templater/1_resolvers/app/models/sql_template.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=58

SETTING UP A SQLRESOLVER 59

Normalize name and prefix, so the tuple ["index", "users"] becomes

"users/index" and the tuple ["template", nil] becomes "template".

def normalize_path(name, prefix)

prefix.present? ? "#{prefix}/#{name}" : name

end

Normalize arrays by converting all symbols to strings.

def normalize_array(array)

array.map(&:to_s)

end

Initialize an ActionView::Template object based on the record found.

def initialize_template(record)

source = record.body

identifier = "SqlTemplate - #{record.id} - #{record.path.inspect}"

handler = ActionView::Template.registered_template_handler(record.handler)

details = {

:format => Mime[record.format],

:updated_at => record.updated_at,

:virtual_path => virtual_path(record.path, record.partial)

}

ActionView::Template.new(source, identifier, handler, details)

end

Make paths as "users/user" become "users/_user" for partials.

def virtual_path(path, partial)

return path unless partial

if index = path.rindex("/")

path.insert(index + 1, "_")

else

"_#{path}"

end

end

end

end

Our implementation normalizes the given arguments, queries the data-

base, and creates template objects from the result set. We also add

several validations to our model. We ensure that the body and path val-

ues cannot be blank, and we also guarantee that a valid format, locale,

and handler are supplied.

As a result of adding some validations to our models, some function-

als tests are failing since our fixtures now contain invalid data. To

make them pass, let’s change the fixture at test/fixtures/sql_templates.yml

to include a valid format, locale, and handler:

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=59

SETTING UP A SQLRESOLVER 60

Download templater/1_resolvers/test/fixtures/sql_templates.yml

one:

path: "some/path"

format: "html"

locale: "en"

handler: "erb"

partial: false

body: "Body"

It Works!

Now with our resolver implemented and a green test suite, we get to

create a new scaffold and make it use templates from the database,

instead of the filesystem. So, let’s create a user scaffold by running the

following command:

bundle exec rails generate scaffold User name:string

And run our migrations next:

rake db:migrate

We can now start the server, access /users, and perform all CRUD oper-

ations as usual.

Next, let’s access the /sql_templates path and create a new template by

filling the template body with the same contents as the file in app/views/

users/index.html.erb; setting the path with users/index; setting the format,

locale, and handler to html, en, and erb, respectively; and keeping the

partial box unchecked.

Save this new template, and head back to the /users path. Now, delete

the view file app/views/users/index.html.erb, and rerender the page. You

should get a “Template is missing” error, but don’t worry, because

we expected that. The template is stored in the database, but we still

haven’t told the UsersController to use our new resolver to retrieve it. Let’s

do it by adding the following line to UsersController:

Download templater/2_running_tests/app/controllers/users_controller.rb

class UsersController < ApplicationController

append_view_path SqlTemplate::Resolver.new

When we refresh the page at /users, we see the whole index page once

again, retrieved from the database! And, while the template is in the

database, the layout still comes from the filesystem. In other words, in

a single request, we can get templates from different resolvers in our

view paths.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/templater/1_resolvers/test/fixtures/sql_templates.yml
http://media.pragprog.com/titles/jvrails/code/templater/2_running_tests/app/controllers/users_controller.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=60

SETTING UP A SQLRESOLVER 61

Feel free to head back to /sql_templates, manipulate the body of the

stored template, and notice that our index action in the UsersController

will change accordingly. The fact we can achieve this behavior in so few

lines of code showcases the power of the ActionView::Resolver abstraction

introduced in Rails 3.

Before we move to the next section, let’s run the test suite once again.

It turns out that a test is failing with an error message:

1) Error:

test_should_get_index(UsersControllerTest)

ActionView::MissingTemplate: Missing template users/index with

:locale=>[:en, :en]

:formats=>[:html]

app/controllers/users_controller.rb

in `index'

This happens because we deleted the template from the filesystem.

Although we added the same template to our development database,

our test database remains clean, raising this MissingTemplate error in

the test environment. To fix this, let’s change our sql_templates fixture.

Download templater/2_running_tests/test/fixtures/sql_templates.yml

one:

path: "users/index"

format: "html"

locale: "en"

handler: "erb"

partial: false

body: "<h1>Listing users</h1>

<table>

<tr>

<th>Name</th>

<th></th>

<th></th>

<th></th>

</tr>

<%% @users.each do |user| %>

<tr>

<td><%%= user.name %></td>

<td><%%= link_to 'Show', user %></td>

<td><%%= link_to 'Edit', edit_user_path(user) %></td>

<td><%%= link_to 'Destroy', user,

:confirm => 'Are you sure?', :method => :delete %></td>

</tr>

<%% end %>

</table>

<%%= link_to 'New user', new_user_path %>"

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/templater/2_running_tests/test/fixtures/sql_templates.yml
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=61

CONFIGURING OUR RESOLVER FOR PRODUCTION 62

Our fixture is just a copy of the template. The only caveat is that Rails

parses fixtures with ERb, so we need to escape our ERb tags in the pre-

vious fixture using <%% ... %>. And that’s all—tests are all green again.

3.2 Configuring Our Resolver for Production

Our SqlTemplate::Resolver already works, but before we use it in produc-

tion, we have to deal with two scenarios: template caching and expiring

this cache whenever a template is modified.

As mentioned earlier, Rails gives our resolver a cache_key through the

find_all method. In the following sections, let’s learn why Rails creates

this cache key and how our resolver uses it.

The Resolvers Cache

As you learned in the code on page 70, ActionView::Resolver’s find_all

method automatically caches templates using the cached method.

These templates are stored in a nested hash created on initialization

and referenced by the instance variable @cached. The resolver also

exposes a clear_cache method to clear the cache hash, and it caches

templates only if Rails.application.config.cache_classes returns true.

Before proceeding, it’s important to discuss some implementation de-

tails. For instance, why do we use a nested hash to cache templates

instead of using just an array or hash as the key? In Ruby, we could

store the templates in the @cached hash in the different ways.

Nested hash

@cached[key][prefix][name][partial]

Simple hash with array as key

@cached[[key, prefix, name, partial]]

Simple hash with hash as key

@cached[:key => key, :prefix => prefix, :name => name, :partial => partial]

All three cache implementations shown give us the desired behavior.

However, there is a difference between them: performance. We need to

explore how Ruby does hash lookups to understand this.

Ruby Hash Lookup

Whenever we store a value for a given key in a Hash object, Ruby stores

three things: the given key, the given value, and the object hash for the

given key. This hash is the result of the Object#hash method called on

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=62

CONFIGURING OUR RESOLVER FOR PRODUCTION 63

Figure 3.3: Illustration of what a hash stores for each entry. Keep in

mind the Ruby implementation does not use a table structure but uses

pointers instead, although the table is an easy way to represent how it

works.

the object given as the key. There is an easy way to prove that Ruby

Hash in fact relies on Object#hash; just start an irb session, and type the

following:

class NoHash

undef_method :hash

end

hash = Hash.new

hash[NoHash.new] = 1

=> NoMethodError: undefined method `hash' for #<NoHash:0x101643820>

If we undefine the hash method in our object, it can no longer be stored

in the hash. Adding an element to the hash is similar to creating a new

entry in a table, as shown in Figure 3.3.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=63

CONFIGURING OUR RESOLVER FOR PRODUCTION 64

Whenever we attempt to retrieve the value for a given key in a Hash

object, like hash[:b], Ruby first calculates the Object#hash for this given

key and then searches whether one or more entries in the Hash object

have this same hash value. For instance, the value returned by :b.hash

is 231228 in Figure 3.3, on the preceding page. Seeing that there are one

or more entries with the value 231228, Ruby then compares whether

any of the keys for these entries is equal to the given key, using the

equality operator eql?. Since :b.eql?(:b) returns true, accessing hash[:b]

in our example successfully returns 2 as the result.

To prove that Ruby in fact uses Object#hash to localize entries, let’s start

another irb session and do a few experiments.

hash = {}

object = Object.new

hash[object] = 1

hash[object] # => 1

def object.hash; 123; end

hash[object] # => nil

hash # => {#<Object:0x1016e3de8>=>1}

This time, we used an arbitrary Ruby object as a hash key, and we could

successfully set and get values. However, after we modified the value

returned by object#hash, the value could not be found, even though the

same object is still in the hash.

The reason Ruby stores Object#hash for each key is to provide faster

lookups. Comparing hash values (integers) is much faster than com-

paring each object stored in the hash.

This implementation implies that the performance hit in finding a value

in the hash is not just in the eql? method but also in calculating

Object#hash for the given key. Remember, we could choose to imple-

ment our resolver cache using a nested hash or a simple hash with

arrays as the key or a simple hash with hashes as keys. We should

choose the first, because in the nested hash case, the hash keys are

strings or booleans, and Ruby knows how to calculate the Object#hash

value for these very fast. On the other hand, calculating Object#hash

and equality for arrays and hashes is more expensive.

We can demonstrate this in another irb session:

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=64

CONFIGURING OUR RESOLVER FOR PRODUCTION 65

require "benchmark"

foo = "foo"

bar = "bar"

array = [foo, bar]

hash = {:a => foo, :b => bar}

nested_hash = Hash.new { |h,k| h[k] = {} }

nested_hash[foo][bar] = true

array_hash = { array => true }

hash_hash = { hash => true }

Benchmark.realtime { 1000.times { nested_hash[foo][bar] } } # => 0.000474

Benchmark.realtime { 1000.times { array_hash[array] } } # => 0.000900

Benchmark.realtime { 1000.times { hash_hash[hash] } } # => 0.001364

We can see the nested hash implementation yields better results. Al-

though the choice for a nested hash apparently does not yield real

gains, the concepts we learned about Hash lookups in Ruby are fun-

damental to understand the next section.

The Cache Key

We already know that our resolvers come with a built-in cache. We also

know that this cache uses a nested hash to store the templates found.

If we take another look at the find_all implementation, we can see this

cache depends on four variables:

def find_all(name, prefix=nil, partial=false, details={}, cache_key=nil)

cached(cache_key, prefix, name, partial) do

find_templates(name, prefix, partial, details)

end

end

In addition to prefix, name, and partial variables, the cache depends also

on the cache_key, which is generated by Rails using all the values in

the details hash.

Remember how we show that calculating the Object#hash and equality

for hash objects is a bit expensive when compared to simpler structures

like strings? If we use details as the key in the cache’s nested hash, it

would be slow since details is a hash of arrays:

Slow because details is a hash of arrays

@cached[details][prefix][name][partial]

Instead, Rails generates a simple Ruby object for each details hash and

sends it as cache_key to resolvers. The whole process is similar to the

following lines:

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=65

CONFIGURING OUR RESOLVER FOR PRODUCTION 66

Generate an object for the details hash

@details_key ||= {}

key = @details_key[details] ||= Object.new

And send it to each resolver

resolver.find_all(name, prefix, partial, details, key)

Inside the resolver, the cache is fast because key is simply an Object

@cached[key][prefix][name][partial]

The details hash is still used as hash key, but the difference is that it

happens just once in a request and not every time a template or layout

is looked up by each resolver.

Let’s fire up irb once again and do our last benchmark in this chapter.

Our benchmark will show how accessing a hash using a simple Object,

like the cache_key does, compares with using a hash of arrays, like the

details hash does:

require "benchmark"

cache_key = Object.new

details = {

:formats => [:html, :xml, :json],

:locale => [:en],

:handlers => [:erb, :builder, :rjs]

}

hash_1 = { cache_key => 10 }

hash_2 = { details => 10 }

Benchmark.realtime { 1000.times { hash_1[cache_key] } } # => 0.000372

Benchmark.realtime { 1000.times { hash_2[details] } } # => 0.003700

Ten times slower is quite a difference! For applications that require

high performance, these milliseconds can easily mount up in requests

that render several collections and partials, dramatically affecting the

response time. In some benchmarks done with Rails, using the details

hash took up to 10 percent of the time spent in the rendering stack, while

using the cache_key reduces this to less than 1 percent.

Expiring the Cache

Since the cache inside resolvers is handled automatically by Rails, we

only need to worry about expiring the cache using the Resolver#clear_

cache method. However, since the cache is in the resolver instance, in

order to expire these caches, we would need to track all instances of

SqlTemplate::Resolver and call clear_cache in each of them whenever we

add or update a template in the database.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=66

CONFIGURING OUR RESOLVER FOR PRODUCTION 67

However, does it really make sense to create several SqlTemplate::Resolver

instances? If we consider that the cache is in the instance, creating

several instances would actually create several caches, reducing their

effectiveness. Therefore, we don’t want several resolvers instances. We

want only one shared across the entire application.

In other words, what we need is a singleton class. Luckily, Ruby has a

Singleton module in its Standard Library, which does all the hard work

for us. By including this module in SqlTemplate::Resolver, it makes Sql-

Template::Resolver.new a private method and exposes SqlTemplate::Resolver.

instance instead, which always returns the same object.

Also, by having a singleton object, it’s very easy to expire the cache.

Since we can always access the instantiated resolver with SqlTemplate::

Resolver.instance, we just need to call clear_cache on it every time we

save a SqlTemplate instance.

So, let’s get started with those changes. The first one is to require and

include Singleton inside SqlTemplate::Resolver:

Download templater/3_improving/app/models/sql_template.rb

require "singleton"

include Singleton

After doing this simple change, we should update both app/controllers/

users_controller.rb and test/unit/sql_template_test.rb to call SqlTemplate::

Resolver.instance instead of SqlTemplate::Resolver.new:

Download templater/3_improving/app/controllers/users_controller.rb

append_view_path SqlTemplate::Resolver.instance

Download templater/3_improving/test/unit/sql_template_test.rb

resolver = SqlTemplate::Resolver.instance

With our singleton resolver in place, let’s write a test in test/unit/sql_tem-

plate_test.rb, which asserts that our cache is properly expired. This new

test should update the SqlTemplate from fixtures and assert our resolver

will return the updated template:

Download templater/3_improving/test/unit/sql_template_test.rb

test "sql_template expires the cache on update" do

cache_key = Object.new

resolver = SqlTemplate::Resolver.instance

details = { :formats => [:html], :locale => [:en], :handlers => [:erb] }

t = resolver.find_all("index", "users", false, details, cache_key).first

assert_match /Listing users/, t.source

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/templater/3_improving/app/models/sql_template.rb
http://media.pragprog.com/titles/jvrails/code/templater/3_improving/app/controllers/users_controller.rb
http://media.pragprog.com/titles/jvrails/code/templater/3_improving/test/unit/sql_template_test.rb
http://media.pragprog.com/titles/jvrails/code/templater/3_improving/test/unit/sql_template_test.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=67

SERVING TEMPLATES WITH METAL 68

sql_template = sql_templates(:one)

sql_template.update_attributes(:body => "New body for template")

t = resolver.find_all("index", "users", false, details, cache_key).first

assert_equal "New body for template", t.source

end

Notice we generated a fake cache_key with Object.new to pass to find_all

because the cache is activated only if a cache key is supplied.

Finally, to make our test pass, let’s add an after_save callback to SqlTem-

plate, right after the model validations:

Download templater/3_improving/app/models/sql_template.rb

after_save do

SqlTemplate::Resolver.instance.clear_cache

end

And that’s it. We finished our SqlTemplate::Resolver, and it’s ready for

prime time!

3.3 Serving Templates with Metal

Now that we have our own production-ready SqlTemplate::Resolver with

cache-expiring mechanism, we are ready to take it to the next level. In

the following sections, let’s use this template management system as a

simple CMS.

CmsController

We already can create, update, and delete templates by accessing /sql_

templates; now we just need to expose them depending on the accessed

URL. To achieve this, let’s map all requests under /cms/* to a controller

that will use our resolver to find the template in the database and then

render them back to the client. A request at /cms/about should render

a SqlTemplate stored in the database with path equals to about.

We are able to implement this functionality with a few lines of code.

Let’s start with an integration test:

Download templater/3_improving/test/integration/cms_test.rb

require 'test_helper'

class CmsTest < ActiveSupport::TestCase

include Capybara

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/templater/3_improving/app/models/sql_template.rb
http://media.pragprog.com/titles/jvrails/code/templater/3_improving/test/integration/cms_test.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=68

SERVING TEMPLATES WITH METAL 69

test "can access any page in SqlTemplate" do

visit "/sql_templates"

click_link "New Sql template"

fill_in "Body", :with => "My first CMS template"

fill_in "Path", :with => "about"

fill_in "Format", :with => "html"

fill_in "Locale", :with => "en"

fill_in "Handler", :with => "erb"

click_button "Create Sql template"

assert_match "Sql template was successfully created.", page.body

visit "/cms/about"

assert_match "My first CMS template", page.body

end

end

Since our test uses Capybara helpers, let’s add Capybara to our appli-

cation Gemfile:

Download templater/3_improving/Gemfile

group :test do

gem "capybara", "0.4.0"

end

And then let’s configure it in test/test_helper.rb:

Download templater/3_improving/test/test_helper.rb

require "capybara/rails"

Rails.backtrace_cleaner.remove_silencers!

Capybara.default_driver = :rack_test

To make our new test pass, let’s write a route that will map to our

CmsController:

Download templater/3_improving/config/routes.rb

match "cms/*page", :to => "cms#respond"

This route maps all requests at /cms/* to the respond action in the

CmsController, which we implement like this:

Download templater/3_improving/app/controllers/cms_controller.rb

class CmsController < ApplicationController

append_view_path SqlTemplate::Resolver.instance

def respond

render :template => params[:page]

end

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/templater/3_improving/Gemfile
http://media.pragprog.com/titles/jvrails/code/templater/3_improving/test/test_helper.rb
http://media.pragprog.com/titles/jvrails/code/templater/3_improving/config/routes.rb
http://media.pragprog.com/titles/jvrails/code/templater/3_improving/app/controllers/cms_controller.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=69

SERVING TEMPLATES WITH METAL 70

We simply pass the given route as a template name, which will be looked

up in our SqlTemplate::Resolver. Our test suite is green once again!

If you want to test it manually, fire up the server, go to /sql_templates,

create a new template with path equals to about, and add some content.

Then just hit /cms/about and see your new page exhibited!

Playing with Metal

Our CmsController inherits from ApplicationController, which inherits from

ActionController::Base, and consequently it comes with all the function-

ality. It includes all helpers, adds CSRF protection, allows you to hide

actions with hide_action, supports flash messages, adds the respond_to

syntax, and does a lot more that we won’t need in our controller since

it handles only GET requests. Wouldn’t it be nice if we could somehow

have a simpler controller with just the behavior we need?

We have already discussed Abstract Controller and how it provides a

basic structure that is shared between Action Mailer and Action Con-

troller. However, AbstractController::Base does not know anything about

HTTP. Building all the required support from scratch would require

some effort. On the other hand, ActionController::Base comes with the

whole package. Isn’t there a point in the middle?

Actually, there is! It’s called ActionController::Metal. ActionController::Metal

inherits from AbstractController::Base and implements the minimum

functionality required for our controllers to be a valid Rack application

and work with HTTP.

By taking a quick look at ActionController::Base in the Rails source code,

we notice it inherits from Metal and adds a bunch of behavior:

Download rails/actionpack/lib/action_controller/base.rb

module ActionController

class Base < Metal

abstract!

include AbstractController::Layouts

include AbstractController::Translation

include ActionController::Helpers

include ActionController::HideActions

include ActionController::UrlFor

include ActionController::Redirecting

include ActionController::Rendering

include ActionController::Renderers::All

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/rails/actionpack/lib/action_controller/base.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=70

SERVING TEMPLATES WITH METAL 71

AbstractController::Base

ActionController::Metal

ActionController::Base

ApplicationController

CmsController

Figure 3.4: CmsController ancestors chain

include ActionController::ConditionalGet

include ActionController::RackDelegation

Legacy modules

include ActionController::SessionManagement

include ActionController::Caching

include ActionController::MimeResponds

Rails 2.x compatibility

include ActionController::Compatibility

include ActionController::ImplicitRender

include ActionController::Cookies

include ActionController::Flash

include ActionController::Verification

include ActionController::RequestForgeryProtection

include ActionController::Streaming

include ActionController::RecordIdentifier

include ActionController::HttpAuthentication::Basic::ControllerMethods

include ActionController::HttpAuthentication::Digest::ControllerMethods

include ActionController::Instrumentation

include AbstractController::Callbacks

include ActionController::Rescue

end

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=71

WRAPPING UP 72

How many of the previous modules do we need in our CmsController?

Just a few. And this is what we are going to change. Let’s reimplement

CmsController, but this time inheriting from ActionController::Metal and

including only the modules we need, which reduces the overhead in a

request:

Download templater/4_final/app/controllers/cms_controller.rb

class CmsController < ActionController::Metal

include ActionController::Rendering

include AbstractController::Helpers

append_view_path ::SqlTemplate::Resolver.instance

helper CmsHelper

def respond

render :template => params[:page]

end

end

Download templater/4_final/app/helpers/cms_helper.rb

module CmsHelper

end

After these changes, our tests should still be green, showing that our

new controller implementation using ActionController::Metal works as

expected.

If we need more functionality, we just need to add the required mod-

ules. For instance, if we want to add layouts, we include the Abstract-

Controller::Layouts module, create a layout in the database with the path

layouts/cms, and specify layout "cms" in our controller. Try it!

3.4 Wrapping Up

We learned a lot in this chapter. We analyzed Action View’s render-

ing stack, developed a resolver that reads templates from a database,

and added caching to it. Then we created a controller to dynamically

access the pages in the resolver and optimized it by making it an Action-

Controller::Metal object. If you are eager to see more examples about

resolvers, you can check the Rails source code and discover how it

implements the filesystem resolver, which retrieves templates from the

filesystem.

On the other hand, if you are already familiar with Rails’ internals (such

as resolvers and metal) and are still looking for a challenge, you can

learn more about Ruby hashes by checking the Rubinius source code.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/templater/4_final/app/controllers/cms_controller.rb
http://media.pragprog.com/titles/jvrails/code/templater/4_final/app/helpers/cms_helper.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=72

WRAPPING UP 73

Rubinius implements most of the Ruby language in Ruby itself, includ-

ing the Hash class, so you can learn a lot by looking through its source.

Finally, for those NoSQL lovers out there, you could also try rewriting

our SqlTemplate::Resolver using another data store, such as MongoDB or

CouchDB!

In the next chapter, let’s discuss template handlers, such as ERb,

Builder, and HAML. We will create our own handler using Markdown

and ERb, and we’ll hook it up into Rails’ generators.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=73

In this chapter, we’ll see

• Rails template handler API

• Multipart templates with Action Mailer

• Rails generators and railties

Chapter 4

Sending Multipart Emails
Using Template Handlers

To finish our tour of the Rails rendering stack, let’s look at how tem-

plates are compiled and rendered by Rails. So far, we learned that a

controller’s responsibility is to normalize the rendering options and

send them to the view context. Based on these options, the view context

asks the view paths to find a template in the many resolvers it contains.

As we saw in Section 3.1, Writing the Code, on page 56, the resolver

returns instances of ActionView::Template, and at the moment those tem-

plates are initialized, we need to pass along an object called handler as

an argument. Each extension, such as .erb or .haml, has its own tem-

plate handler.

The responsibility of the template handler in the rendering stack is to

compile a template to Ruby source code. And to understand how this

happens, let’s develop a few template handlers on our own.

Our template handler aims to solve a particular issue. Even though the

foundation for today’s emails was created in 1970 and version 4 of the

HTML specification dates from 1997, we still cannot rely on sending

HTML emails to everyone since many email clients cannot render these

properly.

This means that whenever we configure an application to send an HTML

email, we should also send a TEXT version of the same, creating the so-

called multipart email. If the email’s recipient uses a client that cannot

read HTML, it will fall back to the TEXT part.

Prepared exclusively for Uwe Ilgenstein

CHAPTER 4. SENDING MULTIPART EMAILS USING TEMPLATE HANDLERS 75

@handler

@view_paths

@view_context

asks for
a template

returns a
template

asks to compile
the template

returns
compiled template

3

6

78

1
request

@controller

@resolver

asks for
a template

returns a
template

4

5

2 render

9
rendered
template

10
response

Figure 4.1: Objects involved in the rendering stack

While Action Mailer and the Mail gem make creating multipart emails

a breeze, the only issue with this approach is that we have to main-

tain two versions of the same email message. Wouldn’t it be nice if we

actually have one template that could be rendered both as TEXT and

as HTML?

Here’s where Markdown comes in. Markdown1 is a lightweight markup

language, created by John Gruber and Aaron Swartz, that is intended

to be as easy to read and easy to write as possible. Markdown’s syntax

consists entirely of punctuation characters and allows you to embed

custom HTML whenever required. Here’s an example of Markdown text:

Welcome

=======

Hi, José Valim!

Thanks for choosing our product. Before you use it, you just need

to confirm your account by accessing the following link:

http://example.com/confirmation?token=ASDFGHJK

1. http://daringfireball.net/projects/markdown

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://daringfireball.net/projects/markdown
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=75

PLAYING WITH THE TEMPLATE HANDLER API 76

Figure 4.2: HTML generated from a Markdown template

Remember, you have *7 days* to confirm it. For more information,

you can visit our [FAQ][1] or our [Customer Support page][2].

Regards,

The Team.

[1]: http://example.com/faq

[2]: http://example.com/customer

Indeed, it’s quite readable! The best part is that it can be transformed

into HTML, which is rendered as shown in Figure 4.2.

Our template handler is going to use the features of Markdown to gen-

erate both TEXT and HTML views using just one template. The only

issue with Markdown is that it does not interpret Ruby code. To circum-

vent this, let’s first compile our templates with ERb and then convert

them using the Markdown compiler.

Finally, let’s also hook into the Rails 3 generators and configure the

mailer generator to use our new template handler instead of ERb.

4.1 Playing with the Template Handler API

To have an object compliant with the handler API, it just needs to

respond to the call method. This method receives as an argument an

instance of ActionView::Template, which we already discussed in Sec-

tion 3.1, Writing the Code, on page 56, and should return a string con-

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=76

PLAYING WITH THE TEMPLATE HANDLER API 77

taining valid Ruby code. The Ruby code returned by the handler is then

compiled into a method, so rendering a template is as simple as invok-

ing this compiled method.

Before diving into our Markdown + ERb handler, let’s create a few tem-

plate handlers to get acquainted with the API.

Ruby Template Handler

Our first template handler simply allows arbitrary Ruby code as a tem-

plate. This means the following template is valid:

body = ""

body << "This is my first "

body << content_tag(:b, "template handler")

body << "!"

body

To implement this, let’s craft a new gem called handlers using enginex:

enginex handlers

Next, let’s write a simple integration test for our template handler:

Download handlers/1_handlers/test/integration/navigation_test.rb

require 'test_helper'

class NavigationTest < ActiveSupport::IntegrationCase

test '.rb template handler' do

visit '/handlers/index'

expected = 'This is my first template handler!'

assert_match expected, page.body

end

end

The test makes a request to the /handlers/index path; let’s define it in

our router:

Download handlers/1_handlers/test/dummy/config/routes.rb

Dummy::Application.routes.draw do

get "/handlers/:action", :to => "handlers"

end

Since our new route points to HandlersController, let’s implement it as

well:

Download handlers/1_handlers/test/dummy/app/controllers/handlers_controller.rb

class HandlersController < ApplicationController

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/handlers/1_handlers/test/integration/navigation_test.rb
http://media.pragprog.com/titles/jvrails/code/handlers/1_handlers/test/dummy/config/routes.rb
http://media.pragprog.com/titles/jvrails/code/handlers/1_handlers/test/dummy/app/controllers/handlers_controller.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=77

PLAYING WITH THE TEMPLATE HANDLER API 78

And create our Ruby template at test/dummy/app/views/handlers/

index.html.rb:

Download handlers/1_handlers/test/dummy/app/views/handlers/index.html.rb

body = ""

body << "This is my first "

body << content_tag(:b, "template handler")

body << "!"

body

When we run the test suite, it fails because Rails still does not rec-

ognize the .rb extension in templates. To register a new template han-

dler, we invoke ActionView::Template.register_template_handler with two

arguments: the template extension and the handler object. Because the

handler object is anything that responds to call and returns a String, we

can implement our handler simply using Ruby’s lambda. Ruby’s lambda

accepts a block and returns a Proc object that executes the given block

once we invoke call and is a perfect fit because our template handler

implementation is very short:

Download handlers/1_handlers/lib/handlers.rb

require "action_view/template"

ActionView::Template.register_template_handler :rb,

lambda { |template| template.source }

module Handlers

end

Run the test suite, and the test we just wrote now passes. Our lambda

receives as an argument an ActionView::Template instance. Since our

template handler needs to return a String with Ruby code and our tem-

plate in the filesystem is written in Ruby, we just need to return the

template.source.

Because, since Ruby 1.8.7, symbols implement a to_proc method and

:source.to_proc is exactly the same as lambda { |arg| arg.source }, we can

make our template handler even shorter:

Download handlers/1_handlers/lib/handlers.rb

ActionView::Template.register_template_handler :rb, :source.to_proc

String Template Handler

Our .rb template handler is quite simple but has limited usage. Rails

views are constituted mainly of static contents, and handling big

chunks of strings in the Ruby code would quickly become messy. That

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/handlers/1_handlers/test/dummy/app/views/handlers/index.html.rb
http://media.pragprog.com/titles/jvrails/code/handlers/1_handlers/lib/handlers.rb
http://media.pragprog.com/titles/jvrails/code/handlers/1_handlers/lib/handlers.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=78

PLAYING WITH THE TEMPLATE HANDLER API 79

said, let’s implement another template handler that is more suitable

to handle static content but that still allows us to embed Ruby code.

Since strings in Ruby support interpolation, our next template handler

will be based on strings and allow the following syntax:

Download handlers/2_more_handlers/test/dummy/app/views/handlers/show.html.string

Congratulations! You just created another #{@what}!

Our new template uses string interpolation, and the interpolated Ruby

code references an instance variable named @what. This variable is

defined in controllers and given by the view_assigns method to the view,

as we discussed in Section 1.3, Understanding Rails Rendering Stack,

on page 22. So, let’s define a new action with this instance variable in

our HandlersController to be used as a fixture by our tests:

Download handlers/2_more_handlers/test/dummy/app/controllers/handlers_controller.rb

class HandlersController < ApplicationController

def show

@what = "template handler"

end

end

And write a small test for it in our integration suite:

Download handlers/2_more_handlers/test/integration/navigation_test.rb

test '.string template handler' do

visit '/handlers/show'

expected = 'Congratulations! You just created another template handler!'

assert_match expected, page.body

end

To make our new test pass, let’s implement this new template handler,

once again in lib/handlers.rb, as follows:

Download handlers/2_more_handlers/lib/handlers.rb

ActionView::Template.register_template_handler :string,

lambda { |template| "%Q{#{template.source}}" }

Run the test suite, and our new test passes. Our template handler

returns a string created with the Ruby shortcut %Q{}, which is then

compiled to a method by Rails. When this method is invoked, the Ruby

interpreter evaluates the string and returns the interpolated result.

This template handler works fine for simple cases but has two major

flaws: adding the } character to the template causes syntax errors un-

less the character is escaped, and the block support is limited, because

it needs to be wrapped in the whole interpolation syntax. In other

words, both of the following examples are invalid:

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/test/dummy/app/views/handlers/show.html.string
http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/test/dummy/app/controllers/handlers_controller.rb
http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/test/integration/navigation_test.rb
http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/lib/handlers.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=79

BUILDING A TEMPLATE HANDLER WITH MARKDOWN + ERB 80

This } causes a syntax error

#{2.times do}

This does not work as in ERb and is invalid

#{end}

So, let’s look at more robust template handlers next.

4.2 Building a Template Handler with Markdown + ERb

Several gems can compile Markdown syntax to HTML. For our tem-

plate handler, let’s use RDiscount,2 which is a Ruby wrapper to the

fast Markdown compiler library called Discount, written in C.

Markdown Template Handler

Creating a template handler that can compile Markdown code is quite

straightforward. Let’s add another test to our suite:

Download handlers/2_more_handlers/test/integration/navigation_test.rb

test '.md template handler' do

visit '/handlers/rdiscount'

expected = '<p>RDiscount is cool and fast!</p>'

assert_match expected, page.body

end

And then let’s write our template in the filesystem:

Download handlers/2_more_handlers/test/dummy/app/views/handlers/rdiscount.html.md

RDiscount is *cool* and **fast**!

Note that our template uses .md as the extension for Markdown. Let’s

register it in Rails:

Download handlers/2_more_handlers/lib/handlers.rb

require "rdiscount"

ActionView::Template.register_template_handler :md,

lambda { |template| "RDiscount.new(#{template.source.inspect}).to_html" }

Since our template handler relies on RDiscount, let’s add it to the Gem-

file and run bundle install just after:

Download handlers/2_more_handlers/Gemfile

gem "rdiscount", "1.6.5"

When we run the test suite, our new test passes. While our Markdown

template handler works like a charm, it does not allow us to embed

2. https://github.com/rtomayko/rdiscount

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/test/integration/navigation_test.rb
http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/test/dummy/app/views/handlers/rdiscount.html.md
http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/lib/handlers.rb
http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/Gemfile
https://github.com/rtomayko/rdiscount
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=80

BUILDING A TEMPLATE HANDLER WITH MARKDOWN + ERB 81

Ruby code, so its usage becomes quite limited. To circumvent this limi-

tation, we could use the same technique we used in our .string template

handler, but it also has its limitations when using Ruby blocks. There-

fore, we are going to use ERb to embed Ruby code in our Markdown

template and create a new template handler named .merb.

Markdown + ERb Template Handler

First, let’s add an example of our new template handler to the filesys-

tem. This example should be inside our dummy app and will be used

in our tests:

Download handlers/2_more_handlers/test/dummy/app/views/handlers/merb.html.merb

MERB template handler is **<%= %w(cool fast).to_sentence %>**!

And then let’s write a test that renders this template and check the

desired output:

Download handlers/2_more_handlers/test/integration/navigation_test.rb

test '.merb template handler' do

visit '/handlers/merb'

expected = '<p>MERB template handler is cool and fast!</p>'

assert_match expected, page.body.strip

end

This time, to implement our template handler, we are not going to use

a lambda. Instead, let’s create a module that responds to call, so, as our

implementation grows, we will be able to split and refactor it in several

methods, something that would not be possible if we used a lambda.

Also, let’s use the ActionView::Template.registered_template_handler meth-

od to retrieve the ERb handler, as we did in Section 3.1, Writing the

Code, on page 56. The code is shown here and should be added to our

lib/handlers.rb file:

Download handlers/2_more_handlers/lib/handlers.rb

module Handlers

module MERB

def self.erb_handler

@@erb_handler ||= ActionView::Template.registered_template_handler(:erb)

end

def self.call(template)

compiled_source = erb_handler.call(template)

"RDiscount.new(begin;#{compiled_source};end).to_html"

end

end

end

ActionView::Template.register_template_handler :merb, Handlers::MERB

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/test/dummy/app/views/handlers/merb.html.merb
http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/test/integration/navigation_test.rb
http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/lib/handlers.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=81

BUILDING A TEMPLATE HANDLER WITH MARKDOWN + ERB 82

The ERb handler compiles the template, and like any other template

handler, it returns a string with valid Ruby code. The result returned

by this Ruby code is a String containing Markdown syntax that is then

converted to HTML using RDiscount.

Finally, look how we wrapped the code returned by ERb in an inline

begin/end clause. This must be done inline, or it will mess up backtrace

lines. For instance, imagine the following template:

<% nil.this_method_does_not_exist! %>

This template obviously raises an error when rendered. However, con-

sider those two ways to compile the template:

RDiscount.new(begin

nil.this_method_does_not_exist!

end).to_html

RDiscount.new(begin;nil.this_method_does_not_exist!;end).to_html

In the first case, it says the error was raised in the second line, while

in the latter, it correctly accuses the first line. And we need to use

begin/end to wrap the code; otherwise, it’s not valid Ruby code. Let’s

verify this by trying the following code in irb:

puts(a=1;b=a+1) # => raises syntax error

puts(begin;a=1;b=a+1;end) # => prints 2 properly

The last line in our implementation registers our new handler, allowing

all tests to pass. Our .merb template handler is already implemented,

but it still does not render both TEXT and HTML templates as described

at the beginning of this chapter, only the latter. So, let’s change our

template handler to output different results depending on the template

format.

Multipart Emails

The best way to showcase the behavior we want to add to our template

handler is using multipart emails in Action Mailer. So, let’s create a

mailer inside our dummy application to be used by our tests:

Download handlers/3_final/test/dummy/app/mailers/notifier.rb

class Notifier < ActionMailer::Base

def contact(recipient)

@recipient = recipient

mail(:to => @recipient, :from => "john.doe@example.com") do |format|

format.text

format.html

end

end

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/handlers/3_final/test/dummy/app/mailers/notifier.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=82

BUILDING A TEMPLATE HANDLER WITH MARKDOWN + ERB 83

The previous code should look familiar: just like respond_to in your con-

trollers, you can give a block to mail to specify which templates to ren-

der. However in controllers, Rails chooses only one template to render,

while in mailers, the block specifies several templates that are used to

create a single multipart email.

Our email shown previously will have two parts, one in TEXT and

another in HTML. Since both parts will use the same template, let’s

create a template inside our dummy app but without adding a format

to its filename:

Download handlers/3_final/test/dummy/app/views/notifier/contact.merb

Dual templates **rocks**!

And let’s write a test for that using this mailer and view:

Download handlers/3_final/test/integration/navigation_test.rb

test 'dual template with .merb' do

email = Notifier.contact("you@example.com")

assert_equal 2, email.parts.size

assert_equal "multipart/alternative", email.mime_type

assert_equal "text/plain", email.parts[0].mime_type

assert_equal "Dual templates **rocks**!",

email.parts[0].body.encoded.strip

assert_equal "text/html", email.parts[1].mime_type

assert_equal "<p>Dual templates rocks!</p>",

email.parts[1].body.encoded.strip

end

The test asserts that our email has two parts. Since the TEXT part is

an alternative representation of the HTML part, the email should have

a MIME type equal to multipart/alternative, which is automatically set

by Action Mailer. The test then proceeds by checking the MIME type

and body of each part. The order of the parts is also important; if the

parts were inverted, most clients would simply ignore the HTML part,

showing only TEXT.

When we run this test, it fails because our text/plain part contains HTML

code and not only TEXT. This is expected, since our template handler

always returns HTML code. To make it pass, we will need to slightly

change the implementation of Handlers::Merb.call to consider the tem-

plate.formats:

Download handlers/3_final/lib/handlers.rb

def self.call(template)

compiled_source = erb_handler.call(template)

if template.formats.include?(:html)

"RDiscount.new(begin;#{compiled_source};end).to_html"

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/handlers/3_final/test/dummy/app/views/notifier/contact.merb
http://media.pragprog.com/titles/jvrails/code/handlers/3_final/test/integration/navigation_test.rb
http://media.pragprog.com/titles/jvrails/code/handlers/3_final/lib/handlers.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=83

BUILDING A TEMPLATE HANDLER WITH MARKDOWN + ERB 84

else

compiled_source

end

end

We inspect template.formats and check whether it includes the :html for-

mat. If so, we render the template as HTML; otherwise, we just return

the code compiled by ERb, resulting in a TEXT template written in

Markdown syntax. This allows us to send an email with both TEXT

and HTML parts but using just one template!

With this last change, our template handler does exactly what we

planned at the beginning of this chapter. Before we create generators

to our new template handler, let’s briefly discuss how template.formats

is set.

Formats Lookup

In Section 3.1, Writing the Code, on page 56, you learned that the

resolver is responsible for giving the :format option to templates. The

resolver looks at three places to decide which format to use:

• If the template found has a valid format, it’s used. In templates

placed in the filesystem, the format is specified in the template

filename, as in index.html.erb.

• However, if the template found does not specify a format, the

resolver asks the template handler whether it has a default

format.

• Finally, if the template handler has no preferred format, the re-

solver should return the same formats used in the lookup.

Because our contact.merb template does not specify a format, the re-

solver tries to retrieve the default format from our Handlers::MERB tem-

plate handler. This default format is retrieved through Handlers::MERB.

default_format, but since our template handler does not respond to

default_format, the second step is also skipped. So, the last option to

the resolver is to return the format used in the lookup. And since we

are using format.text and format.html methods, they automatically set the

formats in the lookup to, respectively, TEXT and HTML.

For instance, if we defined Handlers::MERB.default_format in our imple-

mentation to return :text or :html, our last test would fail, since our

resolver would never reach the third step and would always return a

TEXT format in the second step.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=84

CUSTOMIZING RAILS GENERATORS 85

4.3 Customizing Rails Generators

With our template handler in hand and rendering multipart emails, the

final step is to create a generator for our gem. Our generator will hook

into Rails’ mailer generator and configure it to create .merb templates

instead .erb.

In versions prior to Rails 3, there was no way to partially customize a

generator. If you wanted to change the templates created by the mailer

generator, you had to create a whole new generator on your own, which,

besides copying those new templates, should also create the mailer

instance and copy test files.

So, in Rails 2.3, if both Haml and Rspec provided scaffold generators

in their own gems, they couldn’t work togther. If you wanted a scaffold

that used both Haml and Rspec, a third generator needed to be created.

Rails 3 generators have a single responsibility and provide hooks so

other generators can do the remaining work. A quick look at the mailer

generator in the Rails source code reveals the hooks it provides:

Download rails/railties/lib/rails/generators/rails/mailer/mailer_generator.rb

module Rails

module Generators

class MailerGenerator < NamedBase

argument :actions, :type => :array,

:default => [], :banner => "method method"

check_class_collision

def create_mailer_file

template "mailer.rb",

File.join('app/mailers', class_path, "#{file_name}.rb")

end

hook_for :template_engine, :test_framework

end

end

end

Although we are not familiar with the whole Generators API yet, we can

see that its main behavior is to copy a mailer template to app/mailers,

which is implemented in the create_mailer_file method. Notice the mailer

generator does not say anything about the template engine or the test

framework; it provides only hooks. This allows Haml and Rspec devel-

opers to change Rails generators without worrying about affecting each

other.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/rails/railties/lib/rails/generators/rails/mailer/mailer_generator.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=85

CUSTOMIZING RAILS GENERATORS 86

The Active Model API and the decoupling in Rails 3 generators are the

major keys to agnosticism in Rails 3. We have already discussed the

former in Chapter 2, Building Models with Active Model, on page 30,

and now we are going to play with the latter.

The Structure of a Generator

To briefly describe how a generator works, let’s take a deeper look at

the Rails::Generators::MailerGenerator shown in the code on the preceding

page. The mailer generator inherits from Rails::Generators::NamedBase.

All generators that inherit from it expect an argument called NAME to

be given when the generator is invoked from the command line. Let’s

verify it by executing the following command inside a Rails application:

$ bundle exec rails g mailer --help

Usage:

rails generate mailer NAME [method method] [options]

Options:

-e, [--template-engine=NAME] # Template engine to be invoked

Default: erb

-t, [--test-framework=NAME] # Test framework to be invoked

Default: test_unit

Back to our generator code. Rails::Generators::MailerGenerator, starting on

line 4, defines :actions as an argument. Since a default value was pro-

vided (an empty array), these actions are optional and appear between

brackets in the previous help message.

Next, the class_collisions_check method verifies that the NAME given to the

generator is not already defined in our application. This is useful since

it raises an error if we try to define a mailer named, for instance, Object.

On the next lines, we define the create_mailer_file method, reproduced

here for convenience:

def create_mailer_file

template "mailer.rb",

File.join('app/mailers', class_path, "#{file_name}.rb")

end

Rails 3 generators work by invoking all public methods in the sequence

they are defined. This construction is interesting because it plays well

with inheritance: if you have to extend the mailer generator to do some

extra tasks, you just need to inherit from it and define more public

methods. Whenever your new generator is invoked, it will first execute

the inherited methods and then the new public methods you defined.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=86

CUSTOMIZING RAILS GENERATORS 87

As with Rails controllers, you can expose or run actions by accident by

leaving a method declared as public.

The create_mailer_file method invokes three methods: template, class_

path, and file_name. The first one is a helper defined in Thor,3 which

is the basis for Rails 3 generators, while the others are defined by

Rails::Generators::NamedBase.

Thor has a module called Thor::Actions, which contains several methods

to assist in generating tasks. One of them is the previous template

method, which accepts two arguments: a source file and a destination.

The template method reads the source file in the filesystem, executes

the embedded Ruby code in it using ERb, and then copies the result to

the given destination. All ERb templates in Thor are evaluated in the

generator context, which means that instance variables defined in your

generator are also available in your templates.

The values returned by the two other methods, class_path and file_name,

are inflected from the NAME given as an argument. To see all the defined

methods and what they return, let’s sneak a peek at the named_base_

test.rb file in Rails’ source code:

Download rails/railties/test/generators/named_base_test.rb

def test_named_generator_attributes

g = generator ['admin/foo']

assert_name g, 'admin/foo', :name

assert_name g, %w(admin), :class_path

assert_name g, 'Admin::Foo', :class_name

assert_name g, 'admin/foo', :file_path

assert_name g, 'foo', :file_name

assert_name g, 'Foo', :human_name

assert_name g, 'foo', :singular_name

assert_name g, 'foos', :plural_name

assert_name g, 'admin.foo', :i18n_scope

assert_name g, 'admin_foos', :table_name

end

This test asserts that when admin/foo is given as NAME, as in rails g

mailer admin/foo, we can access all those methods, and each of them

will return the respective value given in the assertion.

Finally, the mailer generator provides two hooks: one for the template

engine and another for the test framework. Those hooks become options

that can be given through the command line as well. Summing it all up,

3. https://github.com/wycats/thor

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/rails/railties/test/generators/named_base_test.rb
https://github.com/wycats/thor
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=87

CUSTOMIZING RAILS GENERATORS 88

the previous generator accepts a range of arguments and options and

could be invoked as follows:

rails g mailer Notifier welcome contact --test-framework=rspec

Generators’ Hooks

We already know Rails generators provides hooks. However, when we

ask to use ERb as the template engine, how does the mailer generator

know how to find and use it?

Generators’ hooks work because of a set of conventions. When you pick

a template engine named :erb, the Rails::Generators::MailerGenerator will

try to load one of the following three generators:

• Rails::Generators::ErbGenerator

• Erb::Generators::MailerGenerator

• ErbGenerator

And since all generators should be in the $LOAD_PATH, under the rails/

generators or the generators folder, finding these generators is as simple

as trying to require the following files:

• (rails/)generators/rails/erb/erb_generator

• (rails/)generators/rails/erb_generator

• (rails/)generators/erb/mailer/mailer_generator

• (rails/)generators/erb/mailer_generator

• (rails/)generators/erb/erb_generator

• (rails/)generators/erb_generator

If one of those generators is found, it is invoked with the same

command-line arguments given to the mailer generator. In this case,

it defines an Erb::Generators::MailerGenerator, which we are going to dis-

cuss next.

Template Engine Hooks

Rails 3 exposes three hooks for template engines: one for the controller,

one for the mailer, and one for the scaffold generators. The first two

generate files only if some actions are supplied on the command line,

such as in rails g mailer Notifier welcome contact or rails g controller Info about

contact. For each action given, the template engine should create a

template for it.

On the other hand, the scaffold hook creates all views used in the scaf-

fold: index, edit, show, new, the _form partial, and the layout.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=88

CUSTOMIZING RAILS GENERATORS 89

The implementation of Erb::Generators::ControllerGenerator in Rails is:

Download rails/railties/lib/rails/generators/erb/controller/controller_generator.rb

module Erb

module Generators

class ControllerGenerator < Base

argument :actions, :type => :array,

:default => [], :banner => "action action"

def copy_view_files

base_path = File.join("app/views", file_path)

empty_directory base_path

actions.each do |action|

@action = action

@path = File.join(base_path, filename_with_extensions(action))

template filename_with_extensions(:view), @path

end

end

end

end

end

The only method we haven’t discussed yet is filename_with_extensions,

defined in Erb::Generators::Base:

Download rails/railties/lib/rails/generators/erb.rb

module Erb

module Generators

class Base < Rails::Generators::NamedBase #:nodoc:

protected

def format

:html

end

def handler

:erb

end

def filename_with_extensions(name)

[name, format, handler].compact.join(".")

end

end

end

end

The Erb::Generators::ControllerGenerator creates a view file in app/views

using the configured format and handler for each action given. The

template used to create such views in the Rails source code looks like

this:

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/rails/railties/lib/rails/generators/erb/controller/controller_generator.rb
http://media.pragprog.com/titles/jvrails/code/rails/railties/lib/rails/generators/erb.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=89

CUSTOMIZING RAILS GENERATORS 90

Download rails/railties/lib/rails/generators/erb/controller/templates/view.html.erb

<h1><%= class_name %>#<%= @action %></h1>

<p>Find me in <%= @path %></p>

This, for rails g controller admin/foo bar, outputs the following in the file

app/views/admin/foo/bar.html.erb:

<h1>Admin::Foo#bar</h1>

<p>Find me in app/views/admin/foo/bar</p>

The Erb::Generators::MailerGenerator class simply inherits from the pre-

vious controller generator and changes the default format to be :text,

reusing the same logic:

Download rails/railties/lib/rails/generators/erb/mailer/mailer_generator.rb

module Erb

module Generators

class MailerGenerator < ControllerGenerator

protected

def format

:text

end

end

end

end

And the template created for mailers looks like this:

Download rails/railties/lib/rails/generators/erb/mailer/templates/view.text.erb

<%= class_name %>#<%= @action %>

<%%= @greeting %>, find me in app/views/<%= @path %>

Now let’s take a glance at the ERb generator’s directory structure in

the Rails source code at the railties/lib directory; we can easily see which

templates are available, as in Figure 4.3, on the next page.

Therefore, if we want to completely replace ERb generators, we just

need to create those generators and templates. And since Rails 3 gen-

erators play well with inheritance, we can do that by inheriting from the

respective ERb generator and overwriting a few configuration methods.

Creating Our First Generator

All we need to do to implement our .merb generator for the mailer is

inherit from Erb::Generators::MailerGenerator and overwrite both format

and handler methods defined Erb::Generators::Base. Our generator imple-

mentation looks like this:

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/rails/railties/lib/rails/generators/erb/controller/templates/view.html.erb
http://media.pragprog.com/titles/jvrails/code/rails/railties/lib/rails/generators/erb/mailer/mailer_generator.rb
http://media.pragprog.com/titles/jvrails/code/rails/railties/lib/rails/generators/erb/mailer/templates/view.text.erb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=90

CUSTOMIZING RAILS GENERATORS 91

Figure 4.3: Structure for ERb generators

Download handlers/3_final/lib/generators/merb/mailer/mailer_generator.rb

require "rails/generators/erb/mailer/mailer_generator"

module Merb

module Generators

class MailerGenerator < Erb::Generators::MailerGenerator

source_root File.expand_path("../templates", __FILE__)

protected

def format

nil # Our templates have no format

end

def handler

:merb

end

end

end

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/handlers/3_final/lib/generators/merb/mailer/mailer_generator.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=91

EXTENDING RAILS WITH RAILTIES 92

Note that we need to invoke a method called source_root at the class

level to tell Rails where to find the template used by our generator at

lib/generators/merb/mailer/templates.

Since we chose nil as the format and :merb as the handler, let’s name

our template view.merb and have the following content:

Download handlers/3_final/lib/generators/merb/mailer/templates/view.merb

<%= class_name %>#<%= @action %>

<%%= @greeting %>, find me in app/views/<%= @path %>

And that’s it. Our template has the same contents as in the ERb gener-

ator, but you could modify it to include some Markdown by default. To

try the generator, let’s move to the dummy application inside our gem

at test/dummy and invoke the following command:

bundle exec rails g mailer Mailer contact welcome --template-engine=merb

The previous command creates a mailer named Mailer with two tem-

plates named contact.merb and welcome.merb. The generator runs,

showing us the following output:

create app/mailers/mailer.rb

invoke merb

create app/views/mailer

create app/views/mailer/contact.merb

create app/views/mailer/welcome.merb

You can also configure your application at test/dummy/config/ap-

plication.rb to use the merb generator by default, by adding the following

line:

config.generators.mailer :template_engine => :merb

However, you may not want to add this line to each new application you

start. It would be nice if we could set this value as the default inside our

gem and not always in the application. Rails 3 allows us to do it with a

Rails::Railtie. This will be our last topic before we finish this chapter.

4.4 Extending Rails with Railties

A Rails::Railtie (pronounced “Rails Rail-tie”) allows you to hook into Rails’

initialization and configure some defaults. In Rails 2.3, all the steps

that required us to configure and initialize an application were in only

one file. The lack of hooks in previous versions made it hard for other

frameworks to replace Active Record, Test::Unit, and so on.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/handlers/3_final/lib/generators/merb/mailer/templates/view.merb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=92

EXTENDING RAILS WITH RAILTIES 93

In Rails 3, the initialization process was broken apart, and several

hooks were created. In this new architecture, Rails is not responsi-

ble for setting up Active Record; instead, Active Record should tell Rails

how it’s initialized and configured by providing its own railtie.

You should include a railtie in your gem only if at least one of the

following is true:

• Your gem needs to perform a given task while or after the Rails

application is initialized.

• Your gem needs to change a configuration value, such as setting

a generator.

• Your gem must provide Rake tasks and generators in nondefault

locations (the default location for the former is lib/tasks and lib/gen-

erators or lib/rails/generators for the latter).

• You want your gem to provide configuration options to the appli-

cation, such as config.my_gem.key = :value.

Let’s take a look at an excerpt of ActiveRecord::Railtie in the Rails source

code that contains a few examples of these scenarios:

Download rails/activerecord/lib/active_record/railtie.rb

module ActiveRecord

class Railtie < Rails::Railtie

config.active_record = ActiveSupport::OrderedOptions.new

config.app_generators.orm :active_record, :migration => true,

:timestamps => true

config.app_middleware.insert_after "::ActionDispatch::Callbacks",

"ActiveRecord::QueryCache"

rake_tasks do

load "active_record/railties/databases.rake"

end

initializer "active_record.initialize_timezone" do

ActiveRecord.time_zone_aware_attributes = true

ActiveRecord.default_timezone = :utc

end

initializer "active_record.set_configs" do |app|

app.config.active_record.each do |k,v|

ActiveRecord::Base.send("#{k}=", v)

end

end

end

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/rails/activerecord/lib/active_record/railtie.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=93

WRAPPING UP 94

After such examples, we are ready to create our first railtie to configure

the mailer generator to use our new template handler by default:

Download handlers/3_final/lib/handlers/railtie.rb

module Handlers

class Railtie < Rails::Railtie

config.app_generators.mailer :template_engine => :merb

end

end

Since our railtie must be loaded when our gem is loaded, we need to

add a require in lib/handlers.rb:

Download handlers/3_final/lib/handlers.rb

require "handlers/railtie"

And that’s all! Let’s go to the dummy application at test/dummy and

invoke the generator helper once again with bundle exec rails g mailer --

help. Notice the default template engine has changed to merb. Therefore,

we don’t need to pass it as an option when invoking it!

All major Rails generators, such as model, controller, and scaffold, rely

on hooks. As we’ve just seen, this allows us to adapt them to our work-

flow and preferred tools.

In Section 1.1, Booting the Dummy Application, on page 15, we dis-

cussed Rails’ initialization process and the responsibilities of config/boot.rb

and config/application.rb. Although the former is responsible for setting

up the application’s load path, the latter should require Rails frame-

works (such as Active Record and Action Pack), load gems and exten-

sions, and finally define and configure the application object.

The fact that gems and extensions are now loaded before the application

is defined is extremely important since it allows gems to configure Rails

defaults, but the application has the final word about it. For instance,

we changed Rails to use our :merb template engine in the mailer gen-

erator by default. However, if developers want to set this value back

to :erb, they can simply do it inside the application definition at con-

fig/application.rb.

4.5 Wrapping Up

In this chapter, we finished our discussion about Rails’ rendering stack

by building a couple template handlers. Our main template handler

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/handlers/3_final/lib/handlers/railtie.rb
http://media.pragprog.com/titles/jvrails/code/handlers/3_final/lib/handlers.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=94

WRAPPING UP 95

with the .merb extension mixes Markdown with ERb, allowing it to ren-

der both HTML and TEXT parts in an email by using just one template.

This functionality just works if we do not add a format to our template

filename. However, if you recall the SqlTemplate::Resolver we developed

in Section 3.1, Writing the Code, on page 56, we validate the presence

of format, not allowing it to be nil. Therefore, the unique behavior of

our template handler, which is rendering different results depending on

the format, won’t work with SqlTemplate::Resolver. Thankfully, to fix this

issue, we just need to accept a format to be nil in the SqlTemplate class

and implement inside SqlTemplate::Resolver the formats lookup described

in Section 4.2, Formats Lookup, on page 84 so it always returns the

formats used in the lookup. It’s up to you to take this challenge, write

some tests, and make it work!4

Another challenge is to implement hooks for both controller and scaf-

fold generators for our new template handler, in addition to the existing

mailer generator hook. These new hooks could also be set as the default

inside the Rails::Railtie, customizing them in the same way we configured

the mailer to use our generator and create .merb views by default.

Finally, there is much more to discover in the Generators API. Besides

the methods seen in this chapter, Thor::Actions defines copy_file, inject_

into_file, empty_directory, create_file, run, and a few more. In addition,

Rails has a module called Rails::Generators::Actions that provides meth-

ods specific to Rails, such as gem, environment, route, and many others.

Rails also provides a testing facility to generators called Rails::Generators::

TestCase, which can be handy if you need to implement generators con-

taining some logic. You can look at Rails’ test suite for some tests for

the mailer generator:

Download rails/railties/test/generators/mailer_generator_test.rb

require 'generators/generators_test_helper'

require 'rails/generators/mailer/mailer_generator'

class MailerGeneratorTest < Rails::Generators::TestCase

arguments %w(notifier foo bar)

def test_mailer_skeleton_is_created

4. This new lookup should search for templates in the database with the format given

on the conditions hash or where the stored format is nil. If the record has no format, Sql-

Template::Resolver#initialize_template should use the default_format specified by the template

handler (if the handler responds to default_format) or fall back to the format given in condi-

tions. You can find a solution in the code folder at code/handlers/3_final/doc/sql_template.rb.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/rails/railties/test/generators/mailer_generator_test.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=95

WRAPPING UP 96

run_generator

assert_file "app/mailers/notifier.rb" do |mailer|

assert_match /class Notifier < ActionMailer::Base/, mailer

assert_match /default :from => "from@example.com"/, mailer

end

end

def test_invokes_default_test_framework

run_generator

assert_file "test/functional/notifier_test.rb" do |test|

assert_match /class NotifierTest < ActionMailer::TestCase/, test

assert_match /test "foo"/, test

assert_match /test "bar"/, test

end

end

def test_invokes_default_template_engine

run_generator

assert_file "app/views/notifier/foo.text.erb" do |view|

assert_match %r(app/views/notifier/foo\.text\.erb), view

assert_match /<%= @greeting %>/, view

end

assert_file "app/views/notifier/bar.text.erb" do |view|

assert_match %r(app/views/notifier/bar\.text\.erb), view

assert_match /<%= @greeting %>/, view

end

end

end

Be sure to explore all these tools available to you! Next, let’s hook into

Rails’ Notifications API to store all queries done in the database and use

a Rails engine to expose them through a web interface!

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=96

In this chapter, we’ll see

• ActiveSupport::Notifications API

• Rails engines

• Rack, Rails middleware stacks, and custom middlewares

• Ruby threads and queues

Chapter 5

Managing Application Events
with Rails Engines

Since Ruby on Rails’ early days, people have wondered what happens

inside of their applications. How many queries were performed in this

request? How long did this request take?

To address this common concern, a few open source projects (such

as RailsFootnotes1 and Rack::Bug2) and services (such as NewRelic’s

RPM3 and Scout4) were built. Each of them provides different features

and implementations; however, they all have one thing in common: they

monkey-patch Rails.

Since Rails does not provide any hooks for its internal methods, these

projects and services often use alias_method_chain to instrument and

collect the necessary information. An example is the following code,

extracted from Rack::Bug:

ActiveRecord::ConnectionAdapters::AbstractAdapter.class_eval do

def log_with_rack_bug(sql, name, &block)

Rack::Bug::SQLPanel.record(sql, Kernel.caller) do

log_without_rack_bug(sql, name, &block)

end

end

alias_method_chain :log, :rack_bug

end

1. https://github.com/josevalim/rails-footnotes

2. https://github.com/brynary/rack-bug

3. http://www.newrelic.com/features.html

4. http://scoutapp.com/

Prepared exclusively for Uwe Ilgenstein

https://github.com/josevalim/rails-footnotes
https://github.com/brynary/rack-bug
http://www.newrelic.com/features.html
http://scoutapp.com/

STORING NOTIFICATIONS IN THE DATABASE 98

The problem with this approach is that if Rails renames these methods

or changes the number of arguments they receive, the tools stop work-

ing. To address this issue, Rails 3 provides a way to publish and sub-

scribe to events happening inside your application through the Active-

Support::Notifications API.

In this chapter, let’s use this API to subscribe to all queries done in our

application and store them in a MongoDB database. Later let’s create a

Rails::Engine to visualize those queries, including their duration.

5.1 Storing Notifications in the Database

Before we implement the logic to store notifications in the database,

let’s take a look at the Notifications API.

The Notifications API

The Notifications API is quite simple since it consists of just two meth-

ods: instrument and subscribe. The former is called when we want to

instrument and publish an event, and for Active Record queries, it looks

like this:

ActiveSupport::Notifications.instrument("sql.active_record",

:sql => sql, :name => name, :connection_id => self.object_id) do

connection.select_all(sql)

end

The first argument is the name of the event published, which in this

case is sql.active_record, and the second is a hash with extra information

about the event, called payload. To subscribe to those notifications, all

we have to do write something like this:

ActiveSupport::Notifications.subscribe "sql.active_record" do |*args|

do something

end

where args is an array with five items:

• name: A String with the name of the event

• started_at: A Time object representing when the event started

• ended_at: A Time object representing when the event ended

• instrumenter_id: A String containing the unique ID of the object in-

strumenting the event

• payload: A Hash with the information given as payload to instru-

ment

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=98

STORING NOTIFICATIONS IN THE DATABASE 99

And that’s all we need to know. Next let’s take a look at the database

where we are going to store the notifications.

Using MongoDB

MongoDB is a fast and document-oriented database perfectly suited

to storing notifications since it’s high-volume, low-value data. You can

read more about MongoDB at its website,5 which also includes instal-

lation instructions for different operating systems.

Currently, there are several ORMs to interact with MongoDB, but we

are going to use MongoMapper6 for this project. We won’t cover instal-

lation instructions, so if you don’t have MongoDB installed, please do it

now!7 After MongoDB is installed and running, let’s create a new project

using enginex, called sql_metrics:

enginex sql_metrics

After Enginex creates our bare gem with a dummy application, let’s add

a MongoMapper model called SqlMetrics::Metric at lib/sql_metrics/metric.rb:

Download sql_metrics/1_setup/lib/sql_metrics/metric.rb

module SqlMetrics

class Metric

include MongoMapper::Document

end

end

Next let’s load the MongoMapper gem by adding it to our gem’s Gemfile:

Download sql_metrics/1_setup/Gemfile

gem 'mongo_mapper', '0.8.6'

gem 'mongo', '1.1.5'

gem 'bson_ext', '1.1.5'

Then run bundle install. Next, let’s require and set up all of our depen-

dencies in lib/sql_metrics.rb:

Download sql_metrics/1_setup/lib/sql_metrics.rb

require "mongo_mapper"

require "sql_metrics/metric"

We are required to choose a database name

MongoMapper.database = "sql_metrics-#{Rails.env}"

5. http://www.mongodb.org/

6. https://github.com/jnunemaker/mongomapper

7. http://www.mongodb.org/display/DOCS/Quickstart

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/sql_metrics/1_setup/lib/sql_metrics/metric.rb
http://media.pragprog.com/titles/jvrails/code/sql_metrics/1_setup/Gemfile
http://media.pragprog.com/titles/jvrails/code/sql_metrics/1_setup/lib/sql_metrics.rb
http://www.mongodb.org/
https://github.com/jnunemaker/mongomapper
http://www.mongodb.org/display/DOCS/Quickstart
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=99

STORING NOTIFICATIONS IN THE DATABASE 100

And now our gem is MongoMapper ready! Before writing any logic that

actually stores documents in the MongoDB, let’s write a test at test/sql_

metrics_test.rb first. The test instruments an event with the name sql and

asserts a metric that was stored in MongoDB as follows:

Download sql_metrics/1_setup/test/sql_metrics_test.rb

require 'test_helper'

class SqlMetricsTest < ActiveSupport::TestCase

test "any sql. notification is saved in the mongo database" do

payload = { "sql" => "SELECT * FROM foo" }

ActiveSupport::Notifications.instrument "sql.any_orm", payload do

sleep(0.001) # sleep for 1000 microseconds

end

metric = SqlMetrics::Metric.first

assert_equal 1, SqlMetrics::Metric.count

assert_equal "sql.any_orm", metric.name

assert_equal payload, metric.payload

assert metric.duration

assert metric.instrumenter_id

assert metric.started_at

assert metric.created_at

end

end

When we run the test, it fails since we are not storing anything yet:

1) Failure:

test_any_sql._notification_is_saved_in_the_mongo_database(SqlMetricsTest)

<1> expected but was

<0>.

To make the test pass, let’s first subscribe to ActiveSupport::Notifications

at the end of lib/sql_metrics.rb:

Download sql_metrics/2_metrics/lib/sql_metrics.rb

require "active_support/notifications"

ActiveSupport::Notifications.subscribe /^sql\./ do |*args|

SqlMetrics::Metric.store!(args)

end

Our notification hook is simply calling the store! method in our SqlMet-

rics::Metric, which will be responsible for parsing the arguments and cre-

ating a record in the database as follows:

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/sql_metrics/1_setup/test/sql_metrics_test.rb
http://media.pragprog.com/titles/jvrails/code/sql_metrics/2_metrics/lib/sql_metrics.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=100

STORING NOTIFICATIONS IN THE DATABASE 101

Download sql_metrics/2_metrics/lib/sql_metrics/metric.rb

module SqlMetrics

class Metric

include MongoMapper::Document

key :name, String

key :duration, Integer

key :instrumenter_id, String

key :payload, Hash

key :started_at, DateTime

key :created_at, DateTime

def self.store!(args)

metric = new

metric.parse(args)

metric.save!

end

def parse(args)

self.name = args[0]

self.started_at = args[1]

self.duration = (args[2] - args[1]) * 1000000

self.instrumenter_id = args[3]

self.payload = args[4]

self.created_at = Time.now.utc

end

end

end

Let’s run the whole test suite once again and...see our test fail again,

this time telling us that we have more than one item stored in our

MongoDB database! If we debug and inspect what was stored in the

database, we will see a few setup queries. This happens because Active

Record does a few queries whenever we start a Rails application, and

these queries are being stored by our gem. Since MongoMapper does

not clean the database before tests, as Active Record does, our test is

failing. To fix this, let’s add a setup block that is executed before each

test at the end of our test/test_helper.rb:

Download sql_metrics/2_metrics/test/test_helper.rb

class ActiveSupport::TestCase

setup { SqlMetrics::Metric.delete_all }

end

After this change, our test suite is green! To take a look at how our gem

works outside the test environment, let’s boot the application inside

test/dummy and make a few SQL queries. For this, let’s create a resource

named User:

bundle exec rails generate scaffold User name:string age:integer

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/sql_metrics/2_metrics/lib/sql_metrics/metric.rb
http://media.pragprog.com/titles/jvrails/code/sql_metrics/2_metrics/test/test_helper.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=101

EXTENDING RAILS WITH ENGINES 102

Now run the migrations, start the server, and access /users to create and

edit some users. After a few requests, you can start a new console ses-

sion with bundle exec rails console and see all SQL notifications created

in these requests by typing SqlMetrics::Metric.all in the command line!

Although our subscriber works as expected, wouldn’t it be nice if we

had a page where we could see these notifications instead of using

the Rails console? This page should be included in our gem, allowing

everyone to visualize all SQL notifications through a nice web interface.

Let’s use Rails engines to make this work!

5.2 Extending Rails with Engines

Rails engines allow our gem to have controllers, models, helpers, views,

and routes, and consequently they are an excellent tool to build the

notifications page. Although engines are not new in Rails 3, they had

major improvements compared to previous versions.

In Rails 2.3, if you had a gem with an app folder at the gem root, all

controllers, models, and views inside it were automatically pulled in,

and your gem worked as an engine without any extra configuration.

However, in order to make it work, Rails had to hook into Rubygems

and check each gem that was loaded.

For Rails 3, we needed an explicit way to create engines, allowing it to

work in any scenario, not only with Rubygems. With that in mind, Rails

now ships with a new class called Rails::Engine.

To showcase how engines work, let’s move the SqlMetrics::Metric model at

lib/sql_metrics/metric.rb to app/models/sql_metrics/metric.rb. When you run

the tests after this change, our project won’t even boot, since we are

requiring sql_metrics/metric, but there is no such file in the load path.

Let’s fix it in two simple steps. First, let’s add a Rails::Engine to our gem:

Download sql_metrics/3_engine/lib/sql_metrics/engine.rb

module SqlMetrics

class Engine < Rails::Engine

end

end

And second, let’s require the engine at sql_metrics/engine instead of sql_

metrics/metric:

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/sql_metrics/3_engine/lib/sql_metrics/engine.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=102

EXTENDING RAILS WITH ENGINES 103

Download sql_metrics/3_engine/lib/sql_metrics.rb

require "sql_metrics/engine"

Now our tests are able to run again. By defining a Rails::Engine, Rails

automatically autoloads everything under the app folder inside our

gem.

Creating a Rails::Engine is quite similar to creating a Rails::Railtie. This

is because a Rails::Engine is nothing more than a Rails::Railtie with some

default initializers and a couple more configuration options, like the

Paths API.

Paths

In Rails 3, a Rails::Engine does not have hard-coded paths. This means

we are not required to place our models or controllers in app/; we can

put them anywhere we choose. For instance, if we want to put our

controllers in lib/controllers instead of app/controllers, we need to specify

it like this:

module SqlMetrics

class Engine < Rails::Engine

paths.app.controllers = "lib/controllers"

end

end

We can also have Rails load our controllers from both app/controllers

and lib/controllers:

module SqlMetrics

class Engine < Rails::Engine

paths.app.controllers << "lib/controllers"

end

end

We are going to follow the conventional path and stick our controllers at

app/controllers, so don’t apply the previous changes yet. We can check all

customizable paths for an engine by inspecting the Rails source code:

Download rails/railties/lib/rails/engine/configuration.rb

def paths

@paths ||= begin

paths = Rails::Paths::Root.new(@root)

paths.app "app", :glob => "*", :eager_load => true

paths.app.controllers "app/controllers", :eager_load => true

paths.app.helpers "app/helpers", :eager_load => true

paths.app.models "app/models", :eager_load => true

paths.app.mailers "app/mailers", :eager_load => true

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/sql_metrics/3_engine/lib/sql_metrics.rb
http://media.pragprog.com/titles/jvrails/code/rails/railties/lib/rails/engine/configuration.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=103

EXTENDING RAILS WITH ENGINES 104

paths.app.views "app/views"

paths.lib "lib", :load_path => true

paths.lib.tasks "lib/tasks", :glob => "**/*.rake"

paths.config "config"

paths.config.initializers "config/initializers", :glob => "**/*.rb"

paths.config.locales "config/locales", :glob => "*.{rb,yml}"

paths.config.routes "config/routes.rb"

paths.public "public"

paths.public.javascripts "public/javascripts"

paths.public.stylesheets "public/stylesheets"

paths

end

end

Initializers

An engine has several initializers that are responsible for making the

engine work. Here is one of them:

Download rails/railties/lib/rails/engine.rb

initializer :add_routing_paths do |app|

paths.config.routes.to_a.each do |route|

app.routes_reloader.paths.unshift(route) if File.exists?(route)

end

end

This initializer receives a Rails::Application object, like the one defined

in every Rails application at config/application.rb, and adds the engine

routes, at config/routes.rb, to the routes reloader. To see all initializ-

ers defined in a Rails::Engine, we can start a new Rails console under

test/dummy with bundle exec rails console and type the following:

Rails::Engine.initializers.map(&:name) # => [

:set_load_path, :set_autoload_paths, :add_routing_paths,

:add_routing_namespaces, :add_locales, :add_view_paths, :add_metals,

:load_config_initializers, :load_app_classes

]

These initializers are responsible for running through the defined paths

and adding locales files to I18n, appending view paths to Action Con-

troller and Action Mailer, loading metals, and so forth.

Working with an engine is pretty much the same as working with a

Rails application. Since we know how to build applications, building

the notifications page should be straightforward.

The Notifications Page

Before we implement the notifications page, let’s write an integration

test at test/integration/navigation_test.rb that creates a user executing a

few queries in the database and asserts that /sql_metrics exhibits these

queries: Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/rails/railties/lib/rails/engine.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=104

EXTENDING RAILS WITH ENGINES 105

Download sql_metrics/3_engine/test/integration/navigation_test.rb

require 'test_helper'

class NavigationTest < ActiveSupport::IntegrationCase

test 'can visualize and destroy notifications created in a request' do

visit new_user_path

fill_in "Name", :with => "John Doe"

fill_in "Age", :with => "23"

click_button "Create User"

Check for the metric data on the page

visit sql_metrics_path

assert_match "User Load", page.body

assert_match "INSERT INTO", page.body

assert_match "John Doe", page.body

assert_match "sql.active_record", page.body

Assert the number of rows change when an item is destroyed

assert_difference "all('table tr').count", -1 do

click_link "Destroy"

end

end

end

To create our notifications page, let’s create a controller, a view, and

routes inside our gem. Let’s start with the controller:

Download sql_metrics/3_engine/app/controllers/sql_metrics_controller.rb

class SqlMetricsController < ApplicationController

def index

@metrics = SqlMetrics::Metric.all

end

def destroy

@metric = SqlMetrics::Metric.find(params[:id])

@metric.destroy

redirect_to sql_metrics_url

end

end

Our controller has two actions: index and destroy. For the first one, we

need to create a view:

Download sql_metrics/3_engine/app/views/sql_metrics/index.html.erb

<h1>Listing SQL Metrics</h1>

<table cellspacing="10">

<tr>

<th>Name</th>

<th>Duration</th>

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/sql_metrics/3_engine/test/integration/navigation_test.rb
http://media.pragprog.com/titles/jvrails/code/sql_metrics/3_engine/app/controllers/sql_metrics_controller.rb
http://media.pragprog.com/titles/jvrails/code/sql_metrics/3_engine/app/views/sql_metrics/index.html.erb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=105

RAILS AND RACK 106

<th>Started at</th>

<th>Payload</th>

<th></th>

</tr>

<% @metrics.each do |metric| %>

<tr>

<td><%= metric.name %></td>

<td><%= metric.duration %>us</td>

<td><%= time_ago_in_words metric.started_at %> ago</td>

<td>

<% metric.payload.each do |k, v| %>

<p><%= k.humanize %>
 <%= v %></p>

<% end %>

</td>

<td><%= link_to 'Destroy', sql_metric_path(metric),

:confirm => 'Are you sure?', :method => :delete %></td>

</tr>

<% end %>

</table>

Then, let’s add some routes at config/routes.rb:

Download sql_metrics/3_engine/config/routes.rb

Rails.application.routes.draw do

resources :sql_metrics, :only => [:index, :destroy]

end

Run the test and watch it pass! Notice it automatically runs all migra-

tions before executing the test suite, since it is configured to do so

inside test/test_helper.rb:

ActiveRecord::Migrator.migrate(

File.expand_path("../dummy/db/migrate/", __FILE__)

)

To see everything working, let’s move to the application in test/dummy,

start the server, access /sql_metrics, and see all the notifications that we

saw in the Rails console earlier.

With these changes, our gem now provides a model, a controller, a view,

and routes, all handled by Rails!

5.3 Rails and Rack

We are able to store SQL notifications in the database, but it may be

useful to not store notifications for certain requests. For instance, if

we have an admin panel, it may be unnecessary to store notifications

happening inside the admin section.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/sql_metrics/3_engine/config/routes.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=106

RAILS AND RACK 107

To achieve this, let’s develop middleware that sets a flag in SqlMetrics,

turning it off for a specific request. But before we dive into the code,

let’s first take a look at how deeply Rails 3 integrates Rack.

What Is Rack?

Rack provides a minimal, modular, and adaptable interface

for developing web applications in Ruby. By wrapping HTTP

requests and responses in the simplest way possible, it uni-

fies and distills the API for web servers, web frameworks, and

software in between (the so-called middleware) into a single

method call.

—Rack documentation8

Rails applications need a web server in order to interact through the

HTTP protocol. And since the early days, the Rails community saw a

huge range of web servers available to deploy their applications.

Before Rack, Rails was responsible for providing an adapter to each

different web server it supported: one for Mongrel, another for WEBrick,

another for Thin, and so on. Similarly, the MERB team, since they had a

different API than Rails, had to provide different adapters for the same

web servers.

This quickly proved to be a duplication of efforts, and at the beginning

of 2007, when the Ruby community saw the biggest range of alternative

web frameworks, Rack came out proposing a unified API. By following

the Rack API, a web framework could use Rack web servers adapters

instead of providing its own, removing the duplication of effort existing

in the Ruby community.

While Rails 2.2 already provided a simple Rack interface, Rails more

closely embraced Rack and its API in version 2.3. However, the Rack

revolution really happened in Rails 3, where several parts of Rails be-

came Rack end points, and you could easily mount different Rack appli-

cations in the same process. For example, we can easily mount a Sina-

tra application inside the Rails router, as we will see in the following

chapters.

8. http://rack.rubyforge.org/doc/

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://rack.rubyforge.org/doc/
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=107

RAILS AND RACK 108

Hello, Rack!

The Rack specification clearly outlines the API used by Rack applica-

tions to communicate with a web server and between themselves:

A Rack application is a Ruby object (not necessarily a class)

that responds to call. It takes exactly one argument, the envi-

ronment, and returns an array of exactly three values: the

status, the headers, and the body.

—Rack specification9

Rack’s minimal API allows us to write a simple web application in just

a few lines of code:

require 'rubygems'

require 'rack'

class HelloRack

def call(env)

[200, { 'Content-Type' => 'text/html' }, 'Hello Rack!']

end

end

run HelloRack.new

By creating the previous config.ru file in a directory and invoking the

rackup command inside this same directory, Rack starts a web server

and invokes our HelloRack application in each request. When you fire

up a browser and hit http://localhost:9292/, you can see “Hello Rack!”

returned as the response body.

All Rails 3 applications ship with a config.ru file, as we can see in the

dummy application inside test/dummy with the following contents:

This file is used by Rack-based servers to start the application.

require ::File.expand_path('../config/environment', __FILE__)

run Dummy::Application

In other words, the Dummy::Application defined inside test/dummy/config/

application.rb is a Rack application and can be initialized on its own.

Middleware Stacks

Although web server adapters and the Rack application API revolution-

ized the way that Ruby web frameworks are developed, you are probably

more familiar with another term related to Rack: middleware.

9. http://rack.rubyforge.org/doc/files/SPEC.html

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://localhost:9292/
http://rack.rubyforge.org/doc/files/SPEC.html
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=108

RAILS AND RACK 109

Middleware sits between the web server and the Rack application. It

lets us manipulate both the request sent down to the application and

the response returned by the application. However, if a Rack applica-

tion contains another Rack application, you may also use middleware

to modify the request-response life cycle internally. By piling up middle-

ware, we create a so-called middleware stack. Any request to an action

in a Rails 3 controller passes at least through three middleware stacks.

The first of these three middleware stacks is hidden by Rails. It sits

between the web server and the Rails::Application object and contains

only two middleware components:

• Rails::Rack::LogTailer: It parses the log file and prints it on console.

• Rails::Rack::Debugger: It requires and enables ruby-debug.

After passing through this middleware stack, the request hits a Rails::

Application (for example our Dummy::Application inside test/dummy),

which is nothing more than another middleware stack with the router

sitting at the end.

The stack contained by the Rails::Application is the most known middle-

ware stack in Rails and has been available since version 2.3. You can

add or remove middleware from this stack through config.middlewares

available inside config/application.rb. To see all available middleware in

the stack, we need to invoke rake middleware from the command line at

the application root.

For our dummy application inside test/dummy, this command returns

exactly the following:

use ActionDispatch::Static

use Rack::Lock

use ActiveSupport::Cache::Strategy::LocalCache

use Rack::Runtime

use Rails::Rack::Logger

use ActionDispatch::ShowExceptions

use ActionDispatch::RemoteIp

use Rack::Sendfile

use ActionDispatch::Callbacks

use ActiveRecord::ConnectionAdapters::ConnectionManagement

use ActiveRecord::QueryCache

use ActionDispatch::Cookies

use ActionDispatch::Session::CookieStore

use ActionDispatch::Flash

use ActionDispatch::ParamsParser

use Rack::MethodOverride

use ActionDispatch::Head

run Dummy::Application.routes

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=109

RAILS AND RACK 110

Part of the Rails 3 refactoring involved moving some responsibilities

(including cookies, sessions, and flash middleware) from the controller

to the middleware stack. Besides these three, Rails provides other mid-

dleware that can be used stand-alone in any Rack application:

• ActiveSupport::Cache::Strategy::LocalCache: Uses an in-memory

cache store to provide a local cache during requests

• ActionDispatch::ShowExceptions: Is responsible for showing helpful

error pages in development and rendering status pages in produc-

tion from the public directory

• ActionDispatch::RemoteIp: Handles IP spoof checking

• ActionDispatch::Callbacks: Runs the so-called to_prepare callbacks,

which happens once on application boot in production and before

each request in development (such as I18n reloading and ob-

servers loading)

• ActionDispatch::ParamsParser: Parses the parameters given in the

request, both from query string or in the POST body

• ActionDispatch::Head: Converts HEAD requests to GET requests

Your ORM of choice will likely add a few middleware to the stack as well.

In our case, we can see both ConnectionManagement and QueryCache

from Active Record. If you were using DataMapper, you would see a

middleware related to IdentityMap.

The last group of middleware comes from Rack itself and is shared

between frameworks:

• Rack::Lock: Synchronizes non-thread-safe requests

• Rack::Runtime: Measures the request time and returns it as an X-

Runtime header

• Rack::Sendfile: Implements X-Sendfile header for different web

servers

• Rack::MethodOverride: Checks POST requests and converts them to

PUT or DELETE if _method is present in parameters

The last stop in the stack is the application router, which is yet another

Rack application. If the router dispatches the request to a specific

action in a controller, it will also pass through another middleware

stack. Since Rails 3, each controller also has its own middleware stack

to which we can add a middleware with the following syntax:

class UsersController < ApplicationController

use MyMiddleware

use AnotherMiddleware

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=110

RAILS AND RACK 111

This middleware is invoked before the action is called and before any

filters, so it sits quite high in the controller stack. It seems we have more

than one place that we can put our middleware to turn off SqlMetrics, so

let’s implement it!

MuteMiddleware

Before writing our middleware, we need to ensure SqlMetrics provides an

API to mute notifications for a specific block of code. A proposed API is

shown in the test here:

Download sql_metrics/4_mute/test/sql_metrics_test.rb

test 'can ignore notifications when specified' do

SqlMetrics.mute! do

assert SqlMetrics.mute?

ActiveSupport::Notifications.instrument "sql.any_orm" do

sleep(0.001) # sleep for 1000 microseconds

end

end

assert !SqlMetrics.mute?

assert_equal 0, SqlMetrics::Metric.count

end

This API relies on two methods: mute! and mute?. The former receives

a block, and all notifications happening inside the block should not be

stored in the database. The latter returns a boolean depending whether

we are in a mute block.

To make the previous test pass, we implement these two methods, as

shown here:

Download sql_metrics/4_mute/lib/sql_metrics/mute_middleware.rb

module SqlMetrics

def self.mute!

Thread.current["sql_metrics.mute"] = true

yield

ensure

Thread.current["sql_metrics.mute"] = false

end

def self.mute?

Thread.current["sql_metrics.mute"] || false

end

end

Notice we used thread variables to ensure that muting a request in a

thread is not going to affect other threads in a threaded environment.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/sql_metrics/4_mute/test/sql_metrics_test.rb
http://media.pragprog.com/titles/jvrails/code/sql_metrics/4_mute/lib/sql_metrics/mute_middleware.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=111

RAILS AND RACK 112

Also, we need to wrap the yield call in an ensure block, allowing the mute

status to be reverted even if an exception happens while executing the

block (you should write a test case for this scenario and ensure it works

as expected).

After we implement mute! and mute?, we need to change lib/sql_metrics.rb

to load lib/sql_metrics/mute_middleware.rb and the ActiveSupport::Notifica-

tions hook to not store notifications if mute? returns true. After these

changes, the file should look like the following:

Download sql_metrics/4_mute/lib/sql_metrics.rb

require "active_support/notifications"

require "mongo_mapper"

require "sql_metrics/mute_middleware"

require "sql_metrics/engine"

We are required to choose a database name

MongoMapper.database = "sql_metrics-#{Rails.env}"

ActiveSupport::Notifications.subscribe /^sql\./ do |*args|

SqlMetrics::Metric.store!(args) unless SqlMetrics.mute?

end

Run the tests again, and verify that our mute API works as expected.

Now let’s write the middleware that uses it to mute a whole request,

starting by the test. The test asserts two behaviors related to a new

method called mute_regexp= that accepts a regexp specifying which

paths should be muted. If mute_regexp is nil, we do not mute any re-

quest, and all metrics are stored. However, if we set mute_regexp= to

%r{^/users}, all paths starting with /users won’t have their notifications

stored in the database. Our test goes like this:

Download sql_metrics/4_mute/test/integration/navigation_test.rb

test 'can ignore notifications for a given path' do

assert_difference "SqlMetrics::Metric.count" do

visit "/users"

end

begin

SqlMetrics.mute_regexp = %r{^/users}

assert_no_difference "SqlMetrics::Metric.count" do

visit "/users"

end

ensure

SqlMetrics.mute_regexp = nil

end

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/sql_metrics/4_mute/lib/sql_metrics.rb
http://media.pragprog.com/titles/jvrails/code/sql_metrics/4_mute/test/integration/navigation_test.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=112

RAILS AND RACK 113

The previous test won’t pass because there is no mute_regexp= method

defined. The configuration method and middleware implementations

are exhibited next:

Download sql_metrics/4_mute/lib/sql_metrics/mute_middleware.rb

module SqlMetrics

mattr_accessor :mute_regexp

@@mute_regexp = nil

class MuteMiddleware

def initialize(app)

@app = app

end

def call(env)

if SqlMetrics.mute_regexp && env["PATH_INFO"] =~ SqlMetrics.mute_regexp

SqlMetrics.mute!{ @app.call(env) }

else

@app.call(env)

end

end

end

end

However, this is not enough to make our test pass since we need to

register our middleware in the application middleware stack. Luckily,

this is easy to achieve in both Rails::Railtie and Rails::Engine:

Download sql_metrics/4_mute/lib/sql_metrics/engine.rb

module SqlMetrics

class Engine < Rails::Engine

Insert the mute middleware high in the stack to ensure

no queries in the stack will escape the mute.

config.app_middleware.insert_after "ActionDispatch::Callbacks",

"SqlMetrics::MuteMiddleware"

Make configurations proxy to SqlMetrics module

config.sql_metrics = SqlMetrics

end

end

The config object exposes the application middleware stack (the one

that ends up in the router) through the app_middleware method. We

insert our middleware high in the stack, because we may have middle-

ware in the stack doing SQL queries besides the application. A common

example is the Sessions middleware, which may do some queries if the

session store is the database.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/sql_metrics/4_mute/lib/sql_metrics/mute_middleware.rb
http://media.pragprog.com/titles/jvrails/code/sql_metrics/4_mute/lib/sql_metrics/engine.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=113

RAILS AND RACK 114

Since our SqlMetrics module now provides a configuration option, we

also set the sql_metrics option in the config object. This allows us to

configure our gem from inside config/application.rb through a nice API:

class Application < ::Rails::Application

config.sql_metrics.mute_regexp = %r{^/admin}

end

After all these changes, our test suite is green once again, showing our

middleware is functional and has a nice configuration API! Way to go!

MuteMiddleware in Other Stacks

In the previous section, we added our middleware to the middleware

stack that ends up in the router. But as we know, Rails 3 provides other

middleware stacks, so the question is, can we use our middleware in

any of them?

Rails does not expose the first middleware stack, the one between the

web server and the Rails::Application object. Mainly, there isn’t a need

for it. And when it comes to the controller middleware stack, we could

indeed include our middleware, but we need to reevaluate its imple-

mentation a bit.

Our middleware allows us to configure the path it should mute through

a regular expression. However, when we are in the controller, we already

passed through the router, so we don’t want the middleware to con-

sider the current path. Instead, we want to mute the whole controller,

independent of the path the request was made. A more adequate imple-

mentation of a mute middleware for controllers would be as follows:

class MuteControllerMiddleware

def initialize(app)

@app = app

end

def call(env)

SqlMetrics.mute!{ @app.call(env) }

end

end

And then we simply declare it in our controller:

class AdminController < ApplicationController

You could also use :only and :except options.

use MuteControllerMiddleware, :only => :index

use MuteControllerMiddleware

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=114

STORING NOTIFICATIONS ASYNCHRONOUSLY 115

It’s up to you to try it! It’s important to remember, though, that this

functionality could also be achieved using the prepend_around_filter

method in controllers:

class AdminController < ApplicationController

prepend_around_filter :mute_notifications

protected

def mute_notifications

SqlMetrics.mute!{ yield }

end

end

Ruby and Rails provides several options to achieve the same behavior.

Choose the one that suits you better!

5.4 Storing Notifications Asynchronously

At this point, we can successfully store and visualize all SQL notifi-

cations happening inside our application and mute undesired ones.

However, if a request does ten SQL queries, the request has an extra

overhead of ten insertions done in MongoDB. The need to move some

processing to the background is very common to Rails applications, and

there are several solutions.

Let’s take a look at one possible solution for this common problem next.

Threads and Queues

Let’s create an in-process queue that stores the arguments yielded by

ActiveSupport::Notification.subscribe. This queue is consumed by a thread,

which stores these notifications in MongoDB.

To implement the solution described, we’ll rely solely on the Ruby Stan-

dard Library since Ruby ships with an in-process Queue implementa-

tion. A queue is first-in first-out data structure and therefore has a very

simple API:

require "thread"

q = Queue.new

t = Thread.new do

while last = q.pop

sleep(1) # simulate expense

puts last

end

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=115

STORING NOTIFICATIONS ASYNCHRONOUSLY 116

q << :foo

sleep(1)

$stdout.flush

The previous code creates a new Queue and a new Thread. Inside the

thread there is a loop that calls Queue#pop. If there is no item in the

queue, the thread will block until an item is pushed to the queue. In

the last three lines, we push a symbol to the queue, which will wake up

the thread. After one second, if we flush what was pushed to $stdout, we

can see “foo” printed. If we have several threads blocking on the queue,

the queue manages to wake up one thread at a time to consume the

queue.

This means we can change ActiveSupport::Notifications.subscribe to push

all notifications to the queue, and, at startup, we will create a thread

to consume this queue and save the items in the queue to MongoDB.

Async Subscriptions

To make our implementation behave asynchronously, let’s rewrite the

block given to ActiveSupport::Notifications.subscribe. The file at lib/sql_

metrics.rb should look like this:

Download sql_metrics/5_final/lib/sql_metrics.rb

require "active_support/notifications"

require "mongo_mapper"

require "sql_metrics/mute_middleware"

require "sql_metrics/engine"

require "thread"

We are required to choose a database name

MongoMapper.database = "sql_metrics-#{Rails.env}"

module SqlMetrics

def self.queue

@queue ||= Queue.new

end

def self.thread

@thread ||= Thread.new do

while args = queue.pop

SqlMetrics::Metric.store!(args)

end

end

end

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/sql_metrics/5_final/lib/sql_metrics.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=116

STORING NOTIFICATIONS ASYNCHRONOUSLY 117

Start the Queue and Thread

SqlMetrics.queue

SqlMetrics.thread

ActiveSupport::Notifications.subscribe /^sql\./ do |*args|

SqlMetrics.queue << args unless SqlMetrics.mute?

end

Now run the tests with our new implementation, and they may pass...or

not! Depending on your machine, the tests may always pass or always

fail or alternate between failing and passing. This happens because

saving documents to the MongoDB happens asynchronously, so some-

times the test assertions may happen before the documents are saved

to the database and will consequently fail.

To work around this situation, we need a way to ensure the thread

finished storing items in MongoDB. We could do this by calling SqlMet-

rics.thread.join, but this won’t work in our case because our thread never

finishes; it always blocks in the queue, and calling SqlMetrics.thread.join

would lead to a deadlock, which is a situation where two threads are

waiting each other to finish, but none of them will.

In other words, we need a way to tell our thread to finish by finishing the

while loop. And if we pay attention closely, there is already a way. If we

push nil to the queue, the while args = queue.pop expression will evaluate

to false, and the loop will be aborted. That said, let’s implement a finish!

method inside SqlMetrics with the following:

Download sql_metrics/5_final/lib/sql_metrics.rb

def self.finish!

queue << nil

thread.join

@thread = nil

thread

end

The method pushes a nil object to the queue. Then we call thread.join,

which will consume all items in the queue and finish the thread once

the nil object is consumed. However, after the thread is finished, we need

to create a new one, so the following notifications are still consumed.

To do so, we set the @thread instance variable to nil and call the thread

method once again, creating another consumer thread.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/sql_metrics/5_final/lib/sql_metrics.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=117

WRAPPING UP 118

Now, to ensure our tests will always pass, let’s invoke SqlMetrics.finish!

after each ActiveSupport::Notifications.instrument call in our unit test. Here

is one example:

Download sql_metrics/5_final/test/sql_metrics_test.rb

ActiveSupport::Notifications.instrument "sql.any_orm" do

sleep(0.001) # sleep for 1000 microseconds

end

SqlMetrics.finish!

The integration tests should call finish! just after the form is submitted:

Download sql_metrics/5_final/test/integration/navigation_test.rb

click_button "Create User"

SqlMetrics.finish!

and each time after the /users path is requested:

Download sql_metrics/5_final/test/integration/navigation_test.rb

visit "/users"

SqlMetrics.finish!

Now our tests always pass, and our implementation does not block the

request when storing notifications in MongoDB!

5.5 Wrapping Up

In this chapter, we developed a Rails engine that listens to all SQL

events published in an application and stores them in MongoDB. These

notifications can be seen by accessing /sql_metrics in the browser.

Our implementation uses an in-process queue, allowing these notifi-

cations to be stored asynchronously. Although the implementation is

quite straightforward, the queue provides no persistence; thus, if the

process dies, all items in the queue that were not yet consumed are

going to be lost. In our case, losing a few instrumentation events does

not represent an issue.

Finally, there is still a lot to be done in our gem when it comes to the

visualization part. We could, for instance, allow the developer to sort

these metrics by duration and provide charts. And since we have all

queries stored, it would be nice if we could run EXPLAIN in some queries

to identify why they are not performing well.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/sql_metrics/5_final/test/sql_metrics_test.rb
http://media.pragprog.com/titles/jvrails/code/sql_metrics/5_final/test/integration/navigation_test.rb
http://media.pragprog.com/titles/jvrails/code/sql_metrics/5_final/test/integration/navigation_test.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=118

WRAPPING UP 119

Engine Yard provides a tool called RailsMetrics,10 which is similar to

the one we developed, but it stores all notifications that happen inside

your application, not just SQL ones. It provides charts per request and

other tools, which you may be interested in checking out and helping

improve!

Next, let’s learn how to encapsulate our controllers’ behavior in an

object called ActionController::Responder and customize it to suit our

needs! Then we’ll discuss Rails generators and learn other ways to cus-

tomize Rails 3 generators.

10. https://github.com/engineyard/rails_metrics

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

https://github.com/engineyard/rails_metrics
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=119

In this chapter, we’ll see

• Rails responders and the respond_with method

• Rails generators’ templates customization

Chapter 6

Writing DRY Controllers
with Responders

Rails’ scaffold generator is a great tool to help us prototype a new appli-

cation, and it became even more flexible in Rails 3. The only problem

with scaffolding is that the generated controllers are still a little bit ver-

bose, and we end up with a lot of behavior duplicated across different

controllers. For example, here are the index, show, and create actions

for the UsersController generated in scaffold:

class UsersController < ApplicationController

def index

@users = User.all

respond_to do |format|

format.html # index.html.erb

format.xml { render :xml => @users }

end

end

def show

@user = User.find(params[:id])

respond_to do |format|

format.html # show.html.erb

format.xml { render :xml => @user }

end

end

def create

@user = User.new(params[:user])

respond_to do |format|

Prepared exclusively for Uwe Ilgenstein

CHAPTER 6. WRITING DRY CONTROLLERS WITH RESPONDERS 121

if @user.save

format.html {

redirect_to(@user, :notice => 'User was successfully created.')

}

format.xml {

render :xml => @user, :status => :created, :location => @user

}

else

format.html { render :action => "new" }

format.xml {

render :xml => @user.errors, :status => :unprocessable_entity

}

end

end

end

end

All of these respond_to blocks are very similar from one controller to

another. To solve this issue, Rails 3 introduced a new method called

respond_with, which uses an ActionController::Responder to abstract how

our controllers respond. That said, using this new syntax, these actions

are reduced to the following:

class UsersController < ApplicationController

respond_to :html, :xml

def index

@users = User.all

respond_with(@users)

end

def show

@user = User.find(params[:id])

respond_with(@user)

end

def create

@user = User.new(params[:user])

flash[:notice] = 'User was successfully created.' if @user.save

respond_with(@user)

end

end

We declare at the top which formats our controller responds to and

delegate all the hard work to respond_with. We could rewrite all of our

actions using this cleaner syntax.

In this chapter, we’ll learn how responders work, customize them to

handle HTTP caching and flash messages automatically, and finally

customize the scaffold generator to use respond_with by default.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=121

UNDERSTANDING RESPONDERS 122

6.1 Understanding Responders

To understand the concepts behind responders, we must understand

the three variables that affect how controllers respond: request type,

HTTP verb, and resource status.

Navigational and API Requests

A controller generated by the scaffold generator responds to two for-

mats by default: HTML and XML. The reason why scaffold uses these

two formats is because they represent two types of requests: naviga-

tional and API requests. The former is the one handled by a browser

and holds formats like HTML and IPHONE, while the latter is used by

machines and represents formats like XML and JSON.

def index

@users = User.all

respond_to do |format|

format.html # index.html.erb

format.xml { render :xml => @users }

end

end

Let’s analyze the index action the scaffold generator created for us. The

HTML format receives no block, so it renders a template, while the XML

format renders the XML representation of the resource with render :xml

=> @users.

This means that, depending on the request type, controllers behave in

one way or another. Consequently, in order to abstract how controllers

work, responders should take the request type into account.

HTTP Verb

As we continue analyzing the actions in the scaffolded controller, we see

that the next two actions, show and new, behave exactly the same as the

index action for the same request types. For navigational requests, like

HTML, they render a template, and for API requests, like XML, they

render the resource.

def show

@user = User.find(params[:id])

respond_to do |format|

format.html # show.html.erb

format.xml { render :xml => @user }

end

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=122

UNDERSTANDING RESPONDERS 123

def new

@user = User.new

respond_to do |format|

format.html # new.html.erb

format.xml { render :xml => @user }

end

end

This behavior only changes in the create action. So, what do the index,

show, and new actions have in common that the create action does not?

The HTTP verb.

If the HTTP verb is GET, our controller responds in one way. If it’s POST,

PUT, or DELETE, it behaves in a completely different fashion. In other

words, the HTTP verb is another variable that affects how the scaffolded

controller responds.

At this point, it is also important to note the edit action does not respond

to XML formats. This is because the edit page is used only by naviga-

tional requests and consequently does not use respond_with as well.

Finally, to better summarize the scaffolded controller behavior, we are

going to create a table representing how it responds depending on the

request type and HTTP verb:

Navigational API

GET render template render resource.to_format

POST

PUT

DELETE

So far, we know how it responds for GET in both request types. Now

let’s run through these other HTTP verbs and fill this whole table.

Resource Status

If we analyze the create action, which represents a POST request, we

realize that it has two branches: one if the resource is saved with suc-

cess and the other if not. Each of these branches responds in a different

way:

def create

@user = User.new(params[:user])

respond_to do |format|

if @user.save

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=123

UNDERSTANDING RESPONDERS 124

format.html {

redirect_to(@user, :notice => 'User was successfully created.')

}

format.xml {

render :xml => @user, :status => :created, :location => @user

}

else

format.html { render :action => "new" }

format.xml {

render :xml => @user.errors, :status => :unprocessable_entity

}

end

end

end

The status of the resource determines how the scaffolded controller

responds. In this case, we redirect if the resource saves but render

a page with errors if saving fails. We can also see this pattern in the

update action, which is invoked by PUT requests.

Although the destroy action generated by the scaffolding does not seem

to depend on the resource status, we may eventually need to change

the destroy action to handle cases where resource.destroy returns false.

For example, imagine a setup where a group has several managers.

Because a group needs to have at least one manager, we implement a

before_destroy callback that checks for this condition every time we try

to remove a manager. If the condition isn’t met, both the callback and

the destroy method return false. This new scenario needs to be handled

in the controller, usually by changing the destroy action to show a flash

message and redirect to the group page. In other words, even though

the destroy action generated by the scaffold does not depend on the

resource status, DELETE requests may depend on it.

That said, the controller needs to know the resource status in order to

respond to POST, PUT, and DELETE requests. Our table is modified to

represent this new scenario. And with all three variables that affect our

controller behavior specified, we can now fill in the table, as shown in

Figure 6.1, on the next page. This table represents exactly how our con-

troller behaves depending on the request type, HTTP verb, and resource

status. All respond_with does is call ActionController::Responder, which is

nothing more than this whole table written in Ruby code.

Next, let’s explore how ActionController::Responder is implemented and

how we can modify it to behave in a custom way.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=124

EXPLORING ACTIONCONTROLLER::RESPONDER 125

Navigational API

GET render template render resource.to_format

POST Success redirect_to resource render resource.to_format,

:status => :created

POST Failure render :new render resource.errors,

:status => :unprocessable_

entity

PUT Success redirect_to resource head :ok

PUT Failure render :edit render resource.errors,

:status => :unprocessable_

entity

DELETE Success redirect_to collection head :ok

DELETE Failure redirect_to collection render resource.errors,

:status => :unprocessable_

entity

Figure 6.1: Scaffold Resource Behaviour

6.2 Exploring ActionController::Responder

Anything that responds to call, accepting three arguments, can be a

responder. This means you can use lambda to create a responder. The

three arguments given in the initialization are the current controller,

the resource (or a nested resource or an array of resources), and a

hash of options. All the options given to respond_with are forwarded to

the responder as the third argument.

The ActionController::Responder implements the call method in a single

line of code, as we can see in Rails source code:

Download rails/actionpack/lib/action_controller/metal/responder.rb

def self.call(*args)

new(*args).respond

end

The call method just forwards these three arguments to the ActionCon-

troller::Responder initialization and then calls respond:

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/rails/actionpack/lib/action_controller/metal/responder.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=125

EXPLORING ACTIONCONTROLLER::RESPONDER 126

Download rails/actionpack/lib/action_controller/metal/responder.rb

Main entry point for responder responsible to dispatch

to the proper format.

def respond

method = :"to_#{format}"

respond_to?(method) ? send(method) : to_format

end

HTML format does not render the resource, it always attempt

to render a template.

def to_html

default_render

rescue ActionView::MissingTemplate => e

navigation_behavior(e)

end

All other formats follow the procedure below. First we try to render a

template, if the template is not available, we verify if the resource

responds to :to_format and display it.

def to_format

default_render

rescue ActionView::MissingTemplate => e

api_behavior(e)

end

The respond method checks whether the responder responds to the cur-

rent request format. If positive, it calls the specific method for this for-

mat; otherwise, it calls to_format. Since ActionController::Responder de-

fines only to_html, only HTML requests have a custom behavior, and all

others fall back to the to_format case.

By analyzing both to_html and to_format implementations, we can

clearly see that the former responds with navigational_behavior and the

latter with api_behavior. If we add a new navigational format to an appli-

cation, like IPHONE, the responder will treat it as an API format and not

navigational. Luckily, because of how responders work, we can make

IPHONE use the navigational behavior by simply aliasing the :to_iphone

method to :to_html in an initializer.

ActionController::Responder.class_eval do

alias :to_iphone :to_html

end

Additionally, note that a responder always invokes the default_render

method before falling back to the API or navigational behavior. The

default_render simply tries to render a template, and in case the template

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/rails/actionpack/lib/action_controller/metal/responder.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=126

EXPLORING ACTIONCONTROLLER::RESPONDER 127

is not found, it raises an ActionView::MissingTemplate, which is properly

rescued, allowing responders behavior to kick in.

The navigational_behavior and api_behavior implementation comes next:

Download rails/actionpack/lib/action_controller/metal/responder.rb

ACTIONS_FOR_VERBS = {

:post => :new,

:put => :edit

}

This is the common behavior for "navigation" requests, like

:html, :iphone and so forth.

def navigation_behavior(error)

if get?

raise error

elsif has_errors? && default_action

render :action => default_action

else

redirect_to resource_location

end

end

This is the common behavior for "API" requests, like :xml and :json.

def api_behavior(error)

raise error unless resource.respond_to?(:"to_#{format}")

if get?

display resource

elsif has_errors?

display resource.errors, :status => :unprocessable_entity

elsif post?

display resource, :status => :created, :location => resource_location

else

head :ok

end

end

Display is just a shortcut to render a resource with the current format.

#

display @user, :status => :ok

#

For XML requests it's equivalent to:

#

render :xml => @user, :status => :ok

#

Options sent by the user are also used:

#

respond_with(@user, :status => :created)

display(@user, :status => :ok)

#

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/rails/actionpack/lib/action_controller/metal/responder.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=127

EXPLORING ACTIONCONTROLLER::RESPONDER 128

Results in:

#

render :xml => @user, :status => :created

#

def display(resource, given_options={})

controller.render given_options.merge!(options).merge!(format => resource)

end

Check whether the resource has errors.

def has_errors?

resource.respond_to?(:errors) && !resource.errors.empty?

end

By default, render the <code>:edit</code> action for HTML requests

with failure, unless the verb is POST.

def default_action

@action ||= ACTIONS_FOR_VERBS[request.request_method_symbol]

end

The navigational_behavior implementation is easy to read and maps

straight to the table in Section 6.1, Resource Status, on page 123. For a

GET request, it raises a missing template error, because the only option

for GET requests is to render a template, which we already tried and

did not succeed.

For other HTTP verbs, the navigational behavior checks whether the

resource has errors. If positive and a default action is given, it renders

the default action specified by the ACTIONS_FOR_VERBS hash. Finally, if

the resource does not have errors, it redirects to the resource, which is

what we expect in success cases.

The api_behavior implementation goes through a different path. Notice

that it makes use of the display method, which merges the options given

to respond_with and adds a format before calling render. In other words,

when we call respond_with like this:

respond_with @user, :status => :created

on GET requests for XML format, the controller responds as follows:

render :xml => @user, :status => :created

It’s important to realize Rails responders do not call @user.to_xml. They

simply delegate this responsibility to the render method and conse-

quently to the :xml renderer, as we saw in Section 1.2, Writing the Ren-

derer, on page 18! This is important because people can add new ren-

derers, and they work in responders without adding any other line of

code.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=128

THE FLASH RESPONDER 129

Finally, the last customization available in responders can be done in

our own controller. Imagine that we have a responder that works great

in all cases, except for one specific action and format where we want

it to behave differently. How can we change it? We can use the same

syntax as in respond_to:

def index

@users = User.all

respond_with(@users) do |format|

format.xml { render :xml => @users.to_xml(:some_specific_option => true) }

end

end

And this all works because respond_with forwards the block given to

format.xml to the responder when the request format is XML. This block,

whenever available, is called in the default_render method shown earlier.

The great advantage in using ActionController::Responder is that it cen-

tralizes how our application should behave per format. That said, if

we want to change how all controllers behave at once, we just need to

create our own responder and configure Rails to use it, as shown here:

ApplicationController.responder = MyAppResponder

Furthermore, we can even set custom responders for specific control-

lers in our application:

class UsersController < ApplicationController

self.responder = MyCustomUsersResponder

end

Let’s create a responder with some extra behavior and ask Rails to use

it.

6.3 The Flash Responder

The scaffolded controller uses flash messages in both create and update

actions. These messages are quite similar across different controllers.

Wouldn’t it be nice then if we could set these flash messages by default

inside responders but still provide a nice API to change them?

Let’s implement this feature next using I18n. I18n provides a nice

lookup API and also uses a YAML file, which is the perfect place for

us to keep our flash messages. Let’s use enginex to create a new project

called responders:

enginex responders

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=129

THE FLASH RESPONDER 130

Let’s start by writing a test case that performs all CRUD actions and

ensure a flash message is being exhibited to the client:

Download responders/1_setup/test/integration/navigation_test.rb

require 'test_helper'

class NavigationTest < ActiveSupport::IntegrationCase

test 'sets flash messages automatically' do

visit "/users"

click_link "New User"

fill_in "Name", :with => "John Doe"

click_button "Create User"

assert has_content?("User was successfully created."),

"Expected to show flash message on create"

click_link "Edit"

fill_in "Name", :with => "Doe, John"

click_button "Update User"

assert has_content?("User was successfully updated."),

"Expected to show flash message on update"

click_link "Back"

click_link "Destroy"

assert has_content?("User was successfully destroyed."),

"Expected to show flash message on destroy"

end

end

The test accesses the /users path, which can be generated by invoking

the scaffold generator inside the dummy application at test/dummy.

bundle exec rails g scaffold User name:string

However, the scaffold generator does not use the responder syntax. So,

let’s change the generated controller to use respond_with, removing all

flash messages from the controller as well, because they will be set by

the responders:

Download responders/1_setup/test/dummy/app/controllers/users_controller.rb

class UsersController < ApplicationController

respond_to :html, :xml

def index

@users = User.all

respond_with(@users)

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/responders/1_setup/test/integration/navigation_test.rb
http://media.pragprog.com/titles/jvrails/code/responders/1_setup/test/dummy/app/controllers/users_controller.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=130

THE FLASH RESPONDER 131

def show

@user = User.find(params[:id])

respond_with(@user)

end

def new

@user = User.new

respond_with(@user)

end

def edit

@user = User.find(params[:id])

end

def create

@user = User.new(params[:user])

@user.save

respond_with(@user)

end

def update

@user = User.find(params[:id])

@user.update_attributes(params[:user])

respond_with(@user)

end

def destroy

@user = User.find(params[:id])

@user.destroy

respond_with(@user)

end

end

When we run the test suite, it fails with the following message:

1) Error:

test_sets_flash_messages_automatically(NavigationTest):

Expected to show flash message on create.

<false> is not true.

The failure is expected because our application layout does not show

any flash messages and we haven’t implemented our responder yet.

Let’s fix the former:

Download responders/2_responders/test/dummy/app/views/layouts/application.html.erb

<p class="notice"><%= notice %></p>

<p class="alert"><%= alert %></p>

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/responders/2_responders/test/dummy/app/views/layouts/application.html.erb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=131

THE FLASH RESPONDER 132

Let’s now create the basis for our responder and set it as the default in

ActionController::Base:

Download responders/1_setup/lib/responders.rb

module Responders

class AppResponder < ActionController::Responder

end

end

ActionController::Base.responder = Responders::AppResponder

The responder basis still does not have any logic related to flash mes-

sages. This is because we will implement it in a module called Respon-

ders::Flash that will do the lookup in the I18n framework for a message

to be set in the flash hash.

Imagine a request with valid parameters at the create action in the

UsersController. When respond_with is called and no flash message is set,

the responder should try to find an I18n message under the controller

namespace and action, which in this case is "flash.users.create.notice". If

an I18n message is found, the responder should set it in flash[:notice],

and it will be properly exhibited in the next request.

Alternatively, if the request at UsersController#create does not have valid

parameters (that is, the created user is invalid), the responder should

search for a message at "flash.users.create.alert" and set flash[:alert]

instead.

With these constraints in mind, let’s write our Responders::Flash module:

Download responders/2_responders/lib/responders/flash.rb

module Responders

module Flash

def to_html

set_flash_message! unless get?

super

end

def set_flash_message!

status = has_errors? ? :alert : :notice

return if controller.flash[status].present?

namespace = controller.controller_path.gsub("/", ".")

action = controller.action_name

lookup = [namespace, action, status].join(".").to_sym

default = ["actions", action, status].join(".").to_sym

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/responders/1_setup/lib/responders.rb
http://media.pragprog.com/titles/jvrails/code/responders/2_responders/lib/responders/flash.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=132

THE FLASH RESPONDER 133

i18n_options = {

:scope => :flash,

:default => default,

:resource_name => resource.class.model_name.human

}

message = I18n.t(lookup, i18n_options)

controller.flash[status] = message if message.present?

end

end

end

Our module overwrites the to_html behavior to set flash messages for

non-GET requests and then calls super, allowing the responder behavior

and other extensions to kick in.

Besides setting flash messages based in the controller namespace, our

implementation gives an "actions" namespace as a :default option to I18n.t.

This allows I18n to fall back to "flash.actions.create.notice" if a message

cannot be found at "flash.users.create.notice".

This fallback mechanism allows us to provide application-wide default

messages so we don’t need to repeat ourselves in each controller. Let’s

set the default scaffold messages inside our gem by simply creating a

YAML file with the following:

Download responders/2_responders/lib/responders/locales/en.yml

en:

flash:

actions:

create:

notice: "%{resource_name} was successfully created."

alert: ""

update:

notice: "%{resource_name} was successfully updated."

alert: ""

destroy:

notice: "%{resource_name} was successfully destroyed."

alert: "%{resource_name} could not be destroyed."

Now any controller will by default use the flash messages configured

in this YAML file, unless a specific key for the controller is given. To

achieve this, we use I18n interpolation, which allows us to use

%{resource_name} in our messages, and it will be properly replaced by

the resource human name given to :resource_name when I18n.t is

invoked.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/responders/2_responders/lib/responders/locales/en.yml
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=133

THE FLASH RESPONDER 134

Before running our tests again, let’s include Responders::Flash in Respon-

der::AppResponder and configure the I18n framework to use the default

messages specified in the previous YAML file:

Download responders/2_responders/lib/responders.rb

require "responders/flash"

module Responders

class AppResponder < ActionController::Responder

include Flash

end

end

ActionController::Base.responder = Responders::AppResponder

require 'active_support/i18n'

I18n.load_path << File.expand_path('../responders/locales/en.yml', __FILE__)

Run the test suite and see that our responder is properly triggered and

is using the default flash messages in the YAML file! Since our first test

asserts only for “notice” messages, let’s write one more test asserting

that “alert” messages will be shown in case of failures.

Download responders/2_responders/test/integration/navigation_test.rb

test 'read alert messages from the controller scope' do

begin

I18n.backend.store_translations :en,

:flash => { :users => { :destroy => { :alert => "Cannot destroy!" } } }

visit "/users"

click_link "New User"

fill_in "Name", :with => "Undestroyable"

click_button "Create User"

click_link "Back"

click_link "Destroy"

assert has_content?("Cannot destroy!"),

"Expected to show flash message on destroy"

ensure

I18n.reload!

end

end

The test creates a resource and tries to destroy it but fails, showing

a message that the resource cannot be destroyed. As we did in Sec-

tion 2.1, Aiming for an Active Model–Compliant API, on page 35, we’re

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/responders/2_responders/lib/responders.rb
http://media.pragprog.com/titles/jvrails/code/responders/2_responders/test/integration/navigation_test.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=134

HTTP CACHE RESPONDER 135

using the I18n API to store translations on the fly for the failure sce-

nario.

To make the test pass, we need to make @user.destroy return false. This

is done by adding a callback that adds error messages to @user.errors

and returns false if the username is “Undestroyable”:

Download responders/2_responders/test/dummy/app/models/user.rb

class User < ActiveRecord::Base

before_destroy do

if self.name == "Undestroyable"

self.errors.add(:base, "is undestroyable")

false

end

end

end

With this final change, our tests pass again! There are other features

we could add to our flash responder, but let’s move on and make our

responder a better HTTP citizen.

6.4 HTTP Cache Responder

Rails 1.2 is where Rails started to embrace REST, and since then, devel-

oping APIs has become easier and easier. However, as your application

grows, you may have to focus more on your API implementation and

find ways to optimize the number of requests it can handle.

When you expose an API, it’s common that a client requests a resource

to the server several times, and the client always gets the same re-

sponse back since the requested resource has not changed. In these

cases, the server is wasting time rendering the same resource all over

again, and the client is parsing the same response just to find out that

nothing has changed.

Luckily, the HTTP 1.1 specification has a section dedicated to caching.

The previous problem could be easily solved if the server appends a Last-

Modified header to the response with a timestamp representing when

the resource was last modified. For subsequent requests, the client

should add an If-Modified-Since header with this timestamp, and if the

resource has not changed, the server should return a 304 Not Modified

status and does not need to render the resource again. Upon receiving

a 304 status, the client knows that nothing has changed. This scenario

is exhibited in Figure 6.2, on the next page.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/responders/2_responders/test/dummy/app/models/user.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=135

HTTP CACHE RESPONDER 136

find resource

1

CLIENT SERVER

GET /posts/1.xml

HTTP 1.1 200 OK
Last-Modified: Mon, 17 Apr
2010 14:00:00 GMT
<post>
 <title>Rails 3 rocks</title>
 ...
</post>

find resource
and check data

GET /posts/1.xml
If-Modified-Since: Mon, 17 Apr 2010 14:00:00 GMT

HTTP 1.1 304 Not Modified

2

3

4 5

6

Figure 6.2: Client and server interaction with HTTP Cache

As usual, let’s start our implementation by writing tests first. There are

at least three scenarios to take into account:

• When If-Modified-Since is not provided, our controller responds nor-

mally but adds a Last-Modified header.

• When If-Modified-Since is provided and fresh, our controller re-

sponds with a status of 304 and a blank body.

• When If-Modified-Since is provided and not fresh, our controller

responds normally but adds a new Last-Modified header.

To write these tests, we need to modify some request headers and ver-

ify that a few response headers are being properly set. For this rea-

son, we cannot use Capybara, since it hides the request and response

objects from us (as any integration test suite should). Instead, let’s use

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=136

HTTP CACHE RESPONDER 137

ActionController::TestCase, the built-in structure in Rails to write func-

tional tests.

All three scenarios are tested here using the UsersController as a fixture:

Download responders/3_http_cache/test/http_cache_test.rb

require 'test_helper'

class HttpCacheResponderTest < ActionController::TestCase

tests UsersController

def setup

@request.accept = "application/xml"

ActionController::Base.perform_caching = true

Create two resources to be used in :index actions

User.create(:name => "First", :updated_at => Time.utc(2009))

User.create(:name => "Second", :updated_at => Time.utc(2008))

end

def test_responds_with_last_modified_using_the_latest_timestamp

get :index

assert_equal Time.utc(2009).httpdate, @response.headers["Last-Modified"]

assert_match '<?xml version="1.0" encoding="UTF-8"?>', @response.body

assert_equal 200, @response.status

end

def test_returns_not_modified_if_request_is_still_fresh

@request.env["HTTP_IF_MODIFIED_SINCE"] = Time.utc(2009, 6).httpdate

get :index

assert_equal 304, @response.status

assert @response.body.blank?

end

def test_returns_ok_with_last_modified_if_request_is_not_fresh

@request.env["HTTP_IF_MODIFIED_SINCE"] = Time.utc(2008, 6).httpdate

get :index

assert_equal Time.utc(2009).httpdate, @response.headers["Last-Modified"]

assert_match '<?xml version="1.0" encoding="UTF-8"?>', @response.body

assert_equal 200, @response.status

end

end

Rails 2.3 introduced several helpers on top of the HTTP Cache speci-

fication, and we are simply going to use them to create a new module

called Responders::HttpCache that automatically adds HTTP Cache to all

GET requests:

Download responders/3_http_cache/lib/responders/http_cache.rb

module Responders

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/responders/3_http_cache/test/http_cache_test.rb
http://media.pragprog.com/titles/jvrails/code/responders/3_http_cache/lib/responders/http_cache.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=137

HTTP CACHE RESPONDER 138

module HttpCache

delegate :response, :to => :controller

def to_format

return if do_http_cache? && do_http_cache!

super

end

protected

def do_http_cache!

response.last_modified ||= max_timestamp if max_timestamp

head :not_modified if fresh = request.fresh?(response)

fresh

end

Iterate through all resources and find the last updated.

def max_timestamp

@max_timestamp ||= resources.flatten.map do |resource|

resource.updated_at.try(:utc) if resource.respond_to?(:updated_at)

end.compact.max

end

Just trigger the cache if it's a GET request and perform

caching is enabled.

def do_http_cache?

get? && ActionController::Base.perform_caching

end

end

end

Our implementation mainly loops through all given resources and re-

trieves the timestamp of the last updated one. We then update the

response object, and if the request is fresh (that is, if the resource was

not modified), we return a 304 status to the client and do not render

any resource, since to_format returns before calling super.

Before running our new tests, let’s add Responders::HttpCache to our

AppResponder, modifying the top of the lib/responders.rb file:

Download responders/3_http_cache/lib/responders.rb

require "responders/flash"

require "responders/http_cache"

module Responders

class AppResponder < ActionController::Responder

include Flash

include HttpCache

end

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/responders/3_http_cache/lib/responders.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=138

MORE WAYS TO CUSTOMIZE GENERATORS 139

And that’s it! Our test suite is green again! We extracted the flash and

HTTP Cache responsibility from our controllers, and now it’s handled

automatically by our responder. The best of all is that each feature was

added in just a few lines of code!

6.5 More Ways to Customize Generators

Now that we understand how responders really work and how to adapt

them to our needs, we feel confident about using them more and more

in our controllers. The only issue is that the scaffold generator uses

respond_to by default and not respond_with.

On the other hand, we learned in Section 4.3, Generators’ Hooks, on

page 88 how to customize generators, and there must be a hook to

customize the controller generated in scaffold, right? To confirm our

thoughts, we just need to take a look at the output generated by the

scaffold:

invoke active_record

create db/migrate/20100412155054_create_posts.rb

create app/models/post.rb

route resources :posts

invoke scaffold_controller

create app/controllers/posts_controller.rb

invoke erb

create app/views/posts

create app/views/posts/index.html.erb

create app/views/posts/edit.html.erb

create app/views/posts/show.html.erb

create app/views/posts/new.html.erb

create app/views/posts/_form.html.erb

invoke helper

create app/helpers/posts_helper.rb

invoke stylesheets

identical public/stylesheets/scaffold.css

Each invoke in the output is a hook that we can overwrite. This means

we can indeed replace scaffold_controller generator by another one that

fits our needs.

However, this is not how we will solve this problem. Instead, let’s use

another feature provided by Rails 3 generators that allows us to cus-

tomize generator templates without a need to use generator hooks.

Generators’ Source Path

Consider the following line in a Rails 3 generator:

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=139

MORE WAYS TO CUSTOMIZE GENERATORS 140

copy_file "controller.rb", "app/controller/#{file_name}_controller.rb"

It simply copies the controller.rb file from the generators’ source to the

given destination, which for a UsersController would be app/controllers/

users_controller.rb.

What we haven’t discussed so far is that a generator does not have

only one source but several. Before copying a file to a given location,

the generator searches for this source file in several locations, called

source paths. The source_root class method we specified in Section 4.3,

Creating Our First Generator, on page 90 is actually the last place a

generator searches for a template.

This behavior is actually built into Thor, but Rails 3 wraps it nicely by

automatically adding the lib/templates directory inside your application

to all generators’ source paths. This means that the Rails::Generators::

ScaffoldControllerGenerator used in scaffold will always try to find a tem-

plate at lib/templates/rails/scaffold_controller before using the one provided

by Rails.

When we look at Rails::Generators::ScaffoldControllerGenerator implemen-

tation in Rails source code, we can easily see the logic that copies the

controller template:

Download rails/railties/lib/rails/generators/rail . . . troller/scaffold_controller_generator.rb

module Rails

module Generators

class ScaffoldControllerGenerator < NamedBase

def create_controller_files

template "controller.rb", File.join("app/controllers", class_path,

"#{controller_file_name}_controller.rb")

end

end

end

end

It uses a template named controller.rb, which is available at railties/lib/rails/

generators/rails/scaffold_controller/templates/controller.rb. According to the

source paths, if we place a file at lib/templates/rails/scaffold_controller/

controller.rb inside our application, Rails will use this application file

instead of the one that ships with Rails!

You can easily try this by creating a new Rails application, placing an

empty file at lib/templates/rails/scaffold_controller/controller.rb inside your

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/rails/railties/lib/rails/generators/rails/scaffold_controller/scaffold_controller_generator.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=140

MORE WAYS TO CUSTOMIZE GENERATORS 141

application, and running the scaffold command. When you check the

controller created by the scaffold, it’s empty as well!

Next, let’s use this awesome feature to customize scaffold to use

respond_with by default.

Using respond_with by Default

To use respond_with by default in the scaffold, let’s place a template

inside our application’s lib/templates. However, to avoid doing this in

each new application, we are going to create a generator that copies a

file to the proper location.

Let’s call this generator Responders::Generators::InstallGenerator and im-

plement it as follows:

Download responders/4_final/lib/generators/responders/install/install_generator.rb

module Responders

module Generators

class InstallGenerator < Rails::Generators::Base

source_root File.expand_path("../templates", __FILE__)

def copy_template_file

copy_file "controller.rb",

"lib/templates/rails/scaffold_controller/controller.rb"

end

end

end

end

The template used by our generator is exhibited next:

Download responders/4_final/lib/generators/responders/install/templates/controller.rb

class <%= controller_class_name %>Controller < ApplicationController

respond_to :html, :xml

<% unless options[:singleton] -%>

def index

@<%= table_name %> = <%= orm_class.all(class_name) %>

respond_with(@<%= table_name %>)

end

<% end -%>

def show

@<%= file_name %> = <%= orm_class.find(class_name, "params[:id]") %>

respond_with(@<%= file_name %>)

end

def new

@<%= file_name %> = <%= orm_class.build(class_name) %>

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/responders/4_final/lib/generators/responders/install/install_generator.rb
http://media.pragprog.com/titles/jvrails/code/responders/4_final/lib/generators/responders/install/templates/controller.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=141

MORE WAYS TO CUSTOMIZE GENERATORS 142

respond_with(@<%= file_name %>)

end

def edit

@<%= file_name %> = <%= orm_class.find(class_name, "params[:id]") %>

end

def create

@<%= file_name %> = <%=orm_class.build(class_name,"params[:#{file_name}]")%>

@<%= orm_instance.save %>

respond_with(@<%= file_name %>)

end

def update

@<%= file_name %> = <%= orm_class.find(class_name, "params[:id]") %>

@<%= orm_instance.update_attributes("params[:#{file_name}]") %>

respond_with(@<%= file_name %>)

end

def destroy

@<%= file_name %> = <%= orm_class.find(class_name, "params[:id]") %>

@<%= orm_instance.destroy %>

respond_with(@<%= file_name %>)

end

end

The previous template is based on the one that ships with Rails, but it

replaces all respond_to calls with respond_with. Note it also uses several

methods we have already discussed, except orm_class and orm_instance,

which we are going to discuss soon.

To try a new generator, you can simply move to the dummy application

and invoke it:

bundle exec rails g responders:install

Now when you scaffold any new resource, it uses the new template!

This means the Rails scaffold is flexible not only for Rails extensions

like Haml or Rspec but also for application developers because they can

customize scaffold to fit their workflow and their application structure

and markup.

Generators and ORM Agnosticism

We already discussed Active Model and its role in ORM agnosticism.

We also talked about generator hooks, which provide a way for other

ORMs to hook into model and scaffold generators. However, there is

one element we haven’t discussed yet.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=142

MORE WAYS TO CUSTOMIZE GENERATORS 143

Rails controllers are responsible for interacting with the model and

passing the desired objects to the view. In other words, controllers

should interact with the current ORM and retrieve the required infor-

mation from it. The controller generated by scaffolding should change

depending on the ORM used.

Since previous Rails versions were not prepared to deal with ORM

agnosticism, every new ORM library had to create another scaffold gen-

erator in order to hook into Rails, duplicating all the controller code.

Rails 3 solves this problem by creating an object responsible to tell

the scaffold generator how the interaction with the ORM happens. The

basic implementation for this object is available in the Rails source

code, and it looks like this:

Download rails/railties/lib/rails/generators/active_model.rb

module Rails

module Generators

class ActiveModel

attr_reader :name

def initialize(name)

@name = name

end

GET index

def self.all(klass)

"#{klass}.all"

end

GET show

GET edit

PUT update

DELETE destroy

def self.find(klass, params=nil)

"#{klass}.find(#{params})"

end

GET new

POST create

def self.build(klass, params=nil)

if params

"#{klass}.new(#{params})"

else

"#{klass}.new"

end

end

POST create

def save

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/rails/railties/lib/rails/generators/active_model.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=143

MORE WAYS TO CUSTOMIZE GENERATORS 144

"#{name}.save"

end

PUT update

def update_attributes(params=nil)

"#{name}.update_attributes(#{params})"

end

POST create

PUT update

def errors

"#{name}.errors"

end

DELETE destroy

def destroy

"#{name}.destroy"

end

end

end

end

The orm_class simply points to Rails::Generators::ActiveModel, and orm_in-

stance points to an instance of this same class. So, whenever we invoke

orm_class.all("User") in the template, it invokes Rails::Generators::Active-

Model.all("User") and returns User.all, which is the normal Active Record

behavior.

The orm_instance behaves similarly, except we don’t need to pass the

resource name as an argument, since we already did it in initialization.

So, orm_instance.save successfully returns user.save for Active Record.

All interaction between the controller and the ORM is specified in Rails::

Generators::ActiveModel. The agnosticism comes from the fact that any

ORM can provide its own implementation of this class. All we need

to do is to define an Active Model class inside the ORM’s generator

namespace.

For example, DataMapper has different syntax for finding and updating

records. So, it needs to inherit from Rails::Generators::ActiveModel and

implement the new API:

module DataMapper

module Generators

class ActiveModel < ::Rails::Generators::ActiveModel

def self.find(klass, params=nil)

"#{klass}.get(#{params})"

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=144

WRAPPING UP 145

def update_attributes(params=nil)

"#{name}.update(#{params})"

end

end

end

end

This structure provided by generators plus the Active Model API is what

makes agnosticism possible in Rails 3 and allows any developer to

choose the ORM they find most appropriate for their work.

6.6 Wrapping Up

In this chapter, we looked into responders to understand how they work

and how to customize them. As a proof of concept, we developed two

extensions for responders, one to handle flash messages and another

to handle HTTP caching.

There is much more we could delegate to responders. In the HTTP layer,

we could use the If-Unmodified-Since request-header to provide condi-

tional PUT requests, wherein the resource is updated only if not modi-

fied after the given date; otherwise, we return a 409 Conflict status. This

scenario is exhibited in Figure 6.3, on the following page.

We also took another look at Rails 3 generators and learned more about

ORM agnosticism.

If you want to bring responders and respond_with to your workflow,

you may want to try the Responders gem by Plataforma Tec,1 which

implements both extensions developed in this chapter with some extra

functionalities, such as the ability to change responders to redirect to

the index action instead of the show action when a user is created or

updated.

Next, let’s create a Rails application that allows us to translate I18n

messages through a Sinatra app authenticated with Devise, a popular

authentication library.

1. https://github.com/plataformatec/responders

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

https://github.com/plataformatec/responders
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=145

WRAPPING UP 146

find resource

1

CLIENT SERVER

GET /posts/1.xml

HTTP 1.1 200 OK
Last-Modified: Sun, 11 Jul
2010 11:11:11 GMT
<post>
 <title>Rails 3 rocks</title>
 ...
</post>

find resource
and check data

PUT /posts/1.xml
If-Unmodified-Since: Sun, 11 Jul 2010 11:11:11 GMT

HTTP 1.1 409 Conflict

2

3

4 5

6

Figure 6.3: Client and server interaction with HTTP conditional

requests

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=146

In this chapter, we’ll see

• The I18n framework

• The Sinatra web framework

• The Rails router

• Devise (for authentication) and Capybara (for integration

testing) gems

Chapter 7

Translating Applications
Using Key-Value Backends

Added in Rails 2.2, the internationalization framework (I18n) definitely

played a key role in increasing Rails adoption around the world. Al-

though we can easily make an application available in different lan-

guages, the biggest issue is to maintain this translation data. Some

have a team of translators available, while others choose a collaborative

approach and allow their own users to translate the web app. In both

cases, asking these translators to work with the YAML files directly is

not a viable solution, so it is common to develop a web interface to do

these kinds of changes.

Although we could easily implement a web interface that allows users

to translate our application, using YAML files to store these translations

would require a mechanism to tell all servers to sync and reload these

YAML files once they are updated. As you can imagine, such a solution

could grow in complexity quickly.

Luckily, the I18n framework comes with different backends that allow

us to store translations in other places than YAML files. For example,

since version 0.3.0 of the I18n gem, we can retrieve translations from

Active Record. This makes it much easier to manipulate the transla-

tions table through a web interface and update the site translations

on demand. There is no need to synchronize YAML files between web

servers. On the downside, retrieving translations from the database

instead of an in-memory hash causes a huge impact in performance.

Prepared exclusively for Uwe Ilgenstein

REVISITING RAILS::APPLICATION 148

A solution that can comply with both these requirements (simplicity

and performance) is a key-value store. In this chapter, we will store

translations in a Redis store and use a Key Value backend to retrieve

them. Additionally, we will build a simple Sinatra1 application to expose

a web interface to read, create, and update these translations on the fly.

Unlike previous chapters, all this functionality won’t be developed as

a gem but as a Rails application. After studying and analyzing railties

and engines, we can now build Rails applications with a different per-

spective.

7.1 Revisiting Rails::Application

In Section 5.2, Extending Rails with Engines, on page 102, we dis-

cussed Rails::Engine and how it exhibits several behaviors similar to a

Rails application. When we look at Rails source code, we find the fol-

lowing:

module Rails

class Application < Engine

...

end

end

In fact, the Rails::Application class inherits from Rails::Engine! This means

an application can do everything an engine does, plus some specific

behavior:

• An application is responsible for all bootstrapping (for example,

loading Active Support, setting up load paths, configuring the log-

ger, and so on).

• An application has its own router and middleware stack (as we

discussed in Section 5.3, Middleware Stacks, on page 108).

• An application should load and initialize railties, engines, and

plug-ins.

• An application is responsible for reloading routes between re-

quests if they changed.

• An application is responsible for loading tasks and generators

when appropriate.

1. http://www.sinatrarb.com/

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://www.sinatrarb.com/
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=148

REVISITING RAILS::APPLICATION 149

To take a closer look at these responsibilities, let’s start developing our

Translator app:

rails new translator

By opening config/environment.rb, we see that it simply loads the appli-

cation definition and calls initialize! in the application object. initialize! is

responsible for booting the application, including all railties, engines,

and plug-ins. This method is not defined in engines, since they cannot

boot on their own.

Another behavior exclusive to the Rails::Application object is in the Rake-

file:

Add your own tasks in files placed in lib/tasks ending in .rake,

and they will automatically be available to Rake.

require File.expand_path('../config/application', __FILE__)

require 'rake'

Translator::Application.load_tasks

Although load_tasks, differently from initialize!, is defined in both Rails::Ap-

plication and Rails::Engine, calling it in an engine loads only the engine

Rake tasks, while calling it in an application loads all the application

tasks, including the ones for engines, railties, and plug-ins.

Finally, let’s look at config.ru in the root of our application. We can see

that a Rails application is a valid Rack application (in other words, it

defines a call method that receives a hash and returns an array with

status, headers, and response body):

This file is used by Rack-based servers to start the application.

require ::File.expand_path('../config/environment', __FILE__)

run Translator::Application

The Translator::Application#call method simply invokes the middleware

stack we discussed in Section 5.3, Middleware Stacks, on page 108,

with the router sitting at the end. Since we now understand the appli-

cation responsibilities and how it is built on top of railties and engines,

it is time to move back to the Translator app and create our translation

backend using the I18n API.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=149

I18N BACKENDS AND EXTENSIONS 150

7.2 I18n Backends and Extensions

Whenever we invoke I18n.translate (also aliased as I18n.t) or I18n.localize

(also aliased as I18n.l) in our application, it is in fact just delegating

these methods to the I18n backend stored in I18n.backend. By replacing

this backend, you can completely modify how the I18n library works.

The I18n framework has four different backends:

• I18n::Backend::Simple: Is the default backend and keeps translations

in an in-memory hash populated from YAML files

• I18n::Backend::ActiveRecord: Uses Active Record to retrieve transla-

tions from the database (moved from the I18n framework to an

external gem2 since I18n 0.5 version)

• I18n::Backend::KeyValue: Uses any key value store as backend, as

long it complies with a minimum API

• I18n::Backend::Chain: Allows you to chain several backends; in other

words, if a translation cannot be found in one backend, it searches

for it in the next backend in the chain

In Rails 2.3, the I18n::Backend::Simple was the only functionality used by

default by Rails from I18n. However, in Rails 3, a few changes were

introduced. When you start a new Rails application, you can see the

first one in config/environments/production.rb in the following line:

config.i18n.fallbacks = true

Whenever this configuration option is set to true, Rails configures the

I18n framework to include the fallbacks functionality in the current

backend, allowing any translation to fall back to the default locale if

one cannot be found in the current locale. If you are using I18n outside

of a Rails application, you can also use the fallbacks behavior with one

line of code:

I18n.backend.class.send(:include, I18n::Backend::Fallbacks)

The second I18n feature used by Rails 3 is transliteration support.

The transliteration that ships with Rails allows you to replace accented

Latin characters with their correspondent unaccented ones, as shown

here:

I18n.transliterate("dziękuję") # => "dziekuje"

2. https://github.com/svenfuchs/i18n-active_record

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

https://github.com/svenfuchs/i18n-active_record
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=150

I18N BACKENDS AND EXTENSIONS 151

If you need to transliterate Hebraic, Cyrillic, Chinese characters, and

so on, you can add new transliteration rules on demand. Keep in mind

that fallbacks and transliterations are not a backend but one of the

several extensions provided by the I18n library listed here:

• I18n::Backend::Cache: Uses a cache store in front of I18n.t to store

translation results, that is, the string after lookup, interpolation,

and pluralization took place

• I18n::Backend::Cascade: Cascades lookups by removing nested

scopes from the lookup key; in other words, if :"foo.bar.baz" can-

not be found, it automatically searches for :"foo.bar";

• I18n::Backend::Cldr: Provides support to CLDR (the common locale

data repository)

• I18n::Backend::Fallbacks: Provides locale fallbacks, falling back to the

default locale if a translation cannot be found in the current one

• I18n::Backend::Gettext: Provides support to gettext and .po files

• I18n::Backend::InterpolationCompiler: Compiles interpolation keys

(like %{model}) into translation data to speed up performance

• I18n::Backend::Memoize: Memoizes lookup results; opposed to I18n::

Backend::Cache, it uses an in-memory hash and is useful if you

are using key-value or Active Record backends

• I18n::Backend::Metadata: Adds metadata (such as pluralization

count and interpolation values) to translation results

• I18n::Backend::Pluralization: Adds support to pluralization rules

under :"i18n.plural.rule"

• I18n::Backend::Transliterator: Adds support to transliteration rules (as

discussed earlier) under :"i18n.transliterate.rule";

The I18n library provides several backends and extensions for different

areas such as improving performance or adding more flexibility for lan-

guages with specific needs. In this chapter, though, we are going to use

just two of them: I18n::Backend::KeyValue and I18n::Backend::Memoize.

The Key Value backend for I18n can accept any object as a store as

long as it complies with the following API:

• @store[]: A method to read a value given a key

• @store[]=: A method to set a value given a key

• @store.keys: A method to retrieve all stored keys

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=151

I18N BACKENDS AND EXTENSIONS 152

Since providing a compliant API is trivial, almost all key-values wrap-

pers in Ruby can be used with this backend, as Redis,3 Riak,4 Tokyo

Cabinet,5 and so on. In this chapter, let’s use Redis because it is quite

easy to install.

After Redis is installed and running, let’s integrate it with our Rails

application by adding the redis6 gem, a pure-Ruby client library for

Redis, to our Gemfile:

Download translator/1_translator/Gemfile

gem "redis", "2.1.1"

And then install it:

bundle install

Now let’s fire up a Rails console with bundle exec rails console and check

that Redis conforms with the API expected by I18n:

db = Redis.new

db["foo"] = "bar"

db["foo"] # => bar

db.keys # => ["foo"]

Going back to our I18n setup, let’s create a file called lib/translator.rb,

which will be responsible for setting up a Redis instance pointing to

the appropriate database (the database is referenced as an integer in

Redis). Let’s also create a customized Key Value backend that includes

the I18n::Backend::Memoize module to cache lookups and uses the Redis

store on initialization:

Download translator/1_translator/lib/translator.rb

module Translator

DATABASES = {

"development" => 0,

"test" => 1,

"production" => 2

}

def self.store

@store ||= Redis.new(:db => DATABASES[Rails.env.to_s])

end

3. http://code.google.com/p/redis/

4. http://riak.basho.com/

5. http://1978th.net/tokyocabinet/

6. https://github.com/ezmobius/redis-rb

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/translator/1_translator/Gemfile
http://media.pragprog.com/titles/jvrails/code/translator/1_translator/lib/translator.rb
http://code.google.com/p/redis/
http://riak.basho.com/
http://1978th.net/tokyocabinet/
https://github.com/ezmobius/redis-rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=152

RAILS AND SINATRA 153

class Backend < I18n::Backend::KeyValue

include I18n::Backend::Memoize

def initialize

super(Translator.store)

end

end

end

Next, let’s configure the I18n framework to use our new backend at

Translator::Application:

Download translator/1_translator/config/application.rb

module Translator

class Application < Rails::Application

Set translator backend for I18n

require "translator"

config.i18n.backend = Translator::Backend.new

Opposed to the default I18n backend, both the Active Record and Key

Value backends do not load translations from YAML files before each

request but just on demand (since it would be slow). That said, to store

all default translations in our Redis store, we just need to execute the

following command in a terminal:

bundle exec rails runner "I18n.backend.load_translations"

When we start the Rails console once again, we can access all new

translations stored in our Redis store:

db = Translator.store

db.keys

db["en.errors.messages.blank"]

Notice that, as promised, the messages were properly stored in JSON!

7.3 Rails and Sinatra

With translations properly stored, we can now write our Translator app

using Sinatra. Sinatra is a DSL for quickly creating web applications in

Ruby with minimal effort. The “Hello world” is just a few lines of code:

myapp.rb

require 'sinatra'

get '/' do

'Hello world!'

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/translator/1_translator/config/application.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=153

RAILS AND SINATRA 154

In our case, we won’t access the Sinatra application directly, but we’ll

integrate it with our Rails app. This allows us to reuse all the structure

we already have in Rails ecosystem, such as tests, session, authentica-

tion, and so on. Before we develop our Sinatra application, let’s write

an integration test.

This test should attempt to localize a date using the Polish locale but

will fail because we don’t have any translation data for this locale. Next,

we should visit the translation URL /translator/en/pl, meaning we want to

translate messages from English to Polish, fill in the appropriate trans-

lation field, and store this new translation. After that, we can assert our

translation was successfully stored by being able to localize the same

date. The implementation goes like this:

Download translator/1_translator/test/integration/translator_app_test.rb

require 'test_helper'

class TranslatorAppTest < ActiveSupport::TestCase

include Capybara

Clean up store and load default translations after tests

teardown { Translator.reload! }

test "can translate messages from a given locale to another" do

assert_raise I18n::MissingTranslationData do

I18n.l(Date.new(2010, 04, 17), :locale => :pl)

end

visit "/translator/en/pl"

fill_in "date.formats.default", :with => %{"%d-%m-%Y"}

click_button "Store translations"

assert_match "Translations stored with success!", page.body

assert_equal "17-04-2010", I18n.l(Date.new(2010, 04, 17), :locale => :pl)

end

end

Since our test uses Capybara helpers, let’s add Capybara to our appli-

cation Gemfile:

Download translator/1_translator/Gemfile

group :test do

gem "capybara", "0.4.0"

end

And then let’s configure both Capybara and our Translator.store in test/

test_helper.rb:

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/translator/1_translator/test/integration/translator_app_test.rb
http://media.pragprog.com/titles/jvrails/code/translator/1_translator/Gemfile
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=154

RAILS AND SINATRA 155

Download translator/1_translator/test/test_helper.rb

require "capybara/rails"

Rails.backtrace_cleaner.remove_silencers!

Capybara.default_driver = :rack_test

Translator.reload!

Notice both tests and the test/test_helper.rb files invoke a method called

Translator.reload!. This method will be responsible for removing all keys

from the database and reloading the translation data. Let’s implement

it next:

Download translator/1_translator/lib/translator.rb

def self.reload!

Translator.store.flushdb

I18n.backend.load_translations

end

Now tests are ready to run with rake test:integration, but they fail because

our Sinatra application is not built yet. So, let’s add both Sinatra and

Haml to our project Gemfile (and install these new dependencies with

bundle install):

Download translator/1_translator/Gemfile

gem "sinatra", "1.1.0", :require => "sinatra/base"

gem "haml", "3.0.23"

Our Sinatra application should define a route as /:from/:to, which, when

accessed, renders a view with all translation data available in :from

locale, ready to be translated to the :to locale. Our first code iteration

for our Sinatra application is shown here:

Download translator/1_translator/lib/translator/app.rb

require 'sinatra/base'

require 'haml'

module Translator

class App < Sinatra::Base

set :environment, Rails.env

enable :inline_templates

get "/:from/:to" do |from, to|

exhibit_translations(from, to)

end

protected

Store from and to locales in variables and retrieve

all keys available for translation.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/translator/1_translator/test/test_helper.rb
http://media.pragprog.com/titles/jvrails/code/translator/1_translator/lib/translator.rb
http://media.pragprog.com/titles/jvrails/code/translator/1_translator/Gemfile
http://media.pragprog.com/titles/jvrails/code/translator/1_translator/lib/translator/app.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=155

RAILS AND SINATRA 156

def exhibit_translations(from, to)

@from, @to, @keys = from, to, available_keys(from)

haml :index

end

Get all keys for a locale. Remove the locale from the key and sort them.

If a key is named "en.foo.bar", this method will return it as "foo.bar".

def available_keys(locale)

keys = Translator.store.keys("#{locale}.*")

range = Range.new(locale.size + 1, -1)

keys.map { |k| k.slice(range) }.sort!

end

Get the value in the translator store for a given locale. This method

decodes values and checks if they are a hash, as we don't want subtrees

available for translation since they are managed automatically by I18n.

def locale_value(locale, key)

value = Translator.store["#{locale}.#{key}"]

value if value && !ActiveSupport::JSON.decode(value).is_a?(Hash)

end

end

end

__END__

@@ index

!!!

%html

%head

%title

Translator::App

%body

%h2= "From #{@from} to #{@to}"

%p(style="color:green")= @message

- if @keys.empty?

No translations available for #{@from}

- else

%form(method="post" action="")

- @keys.each do |key|

- from_value = locale_value(@from, key)

- next unless from_value

- to_value = locale_value(@to, key) || from_value

%p

%label(for=key)

%small= key

= from_value

%br

%input(id=key name=key type="text" value=to_value size="120")

%p

%input(type="submit" value="Store translations")

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=156

RAILS AND SINATRA 157

There are a few things to discuss in this implementation. First, notice

we explicitly forward the Rails environment to the Sinatra application

one. Next, we define the /:from/:to route available through the request

method GET. If a route matches, Sinatra will yield both parameters to

the block, which will be executed. The block simply invokes exhibit_trans-

lations, which assigns these parameters to instance variables, gets all

locale keys available for translation, and renders the index template.

In this case, we chose to use Haml7 as template markup for the index

page. The template is just a few lines of code and is in the same file as

the application by using Sinatra’s inline templates feature, which we

enabled at the top of the application. However, it is important to notice

that templates are evaluated in the same context as the application.

This means any method defined in our Sinatra application, as well as

its instance variables, are also available in the template. This approach

is different from Rails, because Rails templates are not evaluated in

the same context as controllers, but in a specific view context, so Rails

needs to copy all instance variables from controllers to views behind

the scenes, as we saw in Section 1.3, Understanding Rails Rendering

Stack, on page 22, and controller methods should be called explicitly

as controller.method.

Finally, notice our template calls the locale_value method. This method

receives a locale and a key and returns the value stored in Redis. This

method should also handle hashes, which are created and stored by

default by the I18n framework, to allow you to retrieve subtrees from

backends.

In I18n, whenever you store a translation { "foo.bar" => "baz" }, it decom-

poses the "foo.bar" key and also stores { "foo" => { "bar" => "baz"} } as the

translation. This allows you to retrieve either the specific translation

with I18n.t("foo.bar") #=> "bar" or a subtree hash with I18n.t("foo") #=> { "bar"

=> "baz" }. That said, if we show hashes in our Sinatra interface, several

translations would be duplicated, because they would appear either in

the subtree hash in the foo key or in the full key foo.bar.

Before we try our Sinatra application, autoload it from lib/translator.rb,

as shown here:

7. Haml stands for HTML Abstraction Markup Language, and you can find some exam-

ples at http://haml-lang.com/.

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://haml-lang.com/
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=157

RAILS AND SINATRA 158

Download translator/1_translator/lib/translator.rb

autoload :App, "translator/app"

And finally mount it in the router at "translator":

Download translator/1_translator/config/routes.rb

mount Translator::App, :at => "/translator"

Let’s verify this now works by starting the server using bundle exec

rails server as usual and accessing /translator/en/pl in our browser! This

page automatically sets up a page to translate message from English

to Polish, but don’t click the submit button yet, since we still haven’t

implemented the POST behavior. In fact, when we run the tests again,

they fail exactly for this reason. Clicking the button in integration tests

causes the server to return “Not Found” instead of showing the expected

success message:

1) Failure:

test_can_translate_messages_from_a_given_locale_to_another(TranslatorAppTest)

<"Not Found"> expected to be =~

</Translations\ stored\ with\ success!/>.

To make the test pass, let’s add a new route to Sinatra for POST re-

quests. This new route should store the translation in the I18n back-

end, passing the destination locale and the translations decoded from

JSON to Ruby; call save in the Redis store, forcing it to be dumped to

the filesystem; and exhibit the translation page once again:

Download translator/2_final/lib/translator/app.rb

post "/:from/:to" do |from, to|

I18n.backend.store_translations to, decoded_translations, :escape => false

Translator.store.save

@message = "Translations stored with success!"

exhibit_translations(from, to)

end

protected

Get all translations sent through the form and decode

their JSON values to check validity.

def decoded_translations

translations = params.except("from", "to")

translations.each do |key, value|

translations[key] = ActiveSupport::JSON.decode(value) rescue nil

end

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/translator/1_translator/lib/translator.rb
http://media.pragprog.com/titles/jvrails/code/translator/1_translator/config/routes.rb
http://media.pragprog.com/titles/jvrails/code/translator/2_final/lib/translator/app.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=158

UNDERSTANDING THE RAILS ROUTER 159

Figure 7.1: Translator app

Notice we set :escape to false when storing translations so I18n can

properly generate subtrees. By default, if you give a translation as

{ "foo.bar" => "baz" }, I18n will treat it as a single key, escaped as {

"foo\000.bar" => "baz" }. When it’s stored this way, we cannot retrieve its

subtree as I18n.t("foo"). However, if we turn escaping to false, I18n will

break the key apart, converting it to { "foo" => { "bar" => "baz" } } and allow

us to retrieve it as I18n.t("foo") or as I18n.t("foo.bar").

Feel free to restart the server and translate all data from any locale

to another! Notice we choose to represent the data as JSON in the

interface, because we can easily represent arrays, strings, numbers,

or booleans. At this point, all our tests are green as well!

We will come back to our Translator application and add a couple more

features soon, but first, let’s take a closer look at the Rails 3 router.

7.4 Understanding the Rails Router

In Rails 3, the router’s API and backend were reimplemented in order

to better integrate with Rack. It allows us to map any route to a Rack

application:

Rails.application.routes.draw do

match "/hello", :to =>

lambda { |env| [200, { "Content-Type" => "text/html" }, ["World"]] }

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=159

UNDERSTANDING THE RAILS ROUTER 160

When we add this route to any Rails application and hit /hello in the

browser, we get “World” as the response from the server. In fact, when

you have a route like this:

Rails.application.routes.draw do

match "/hello", :to => "posts#index"

end

Rails, before a request, automatically converts controller#action to a Rack

application. You can retrieve any action from a controller as a Rack

application by simply doing this:

PostsController.action(:index)

PostsController.action(:index).responds_to?(:call) # => true

When we look at the source code for the action method, we can see

Rails generates a Rack application on demand and wraps it around the

controller middleware stack we discussed in Section 5.3, Middleware

Stacks, on page 108. This Rack application simply initializes a con-

troller and invokes the dispatch method, passing the action name to be

processed and a request object as parameters:

Download rails/actionpack/lib/action_controller/metal.rb

class ActionController::Metal < AbstractController::Base

Creates a Rack application on the fly that

dispatches the given action name.

def self.action(name, klass = ActionDispatch::Request)

middleware_stack.build(name.to_s) do |env|

new.dispatch(name, klass.new(env))

end

end

Dispatches the given action name by processing it

and returning a valid Rack response.

def dispatch(name, request)

@_request = request

@_env = request.env

@_env['action_controller.instance'] = self

process(name)

to_a

end

def to_a

[status, headers, response_body]

end

end

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/rails/actionpack/lib/action_controller/metal.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=160

TAKING IT TO THE NEXT LEVEL WITH DEVISE AND CAPYBARA 161

Whenever you call get, post, put, delete, resources, or resource in the

new router DSL, at the end they always call the match method. The

only method that has different semantics, is mount, used earlier in this

chapter to mount our Sinatra application.

The match method works by generating a regular expression that

matches exactly the given route. When you say match "/translator", it

only matches paths as /^\/translator$/ (the query string is not considered

in matches). However, when mounting a Sinatra application, we don’t

want to match just /translator but also /translator/en/pl, /translator/foo/bar,

and so on. In other words, what we really want is the generated regular

expression to be /^\/translator/, without "$" as anchor. And this is exactly

what the mount method does.

You may have noticed there is something more going on. If any requests

to /translator/en/pl are being handled by Sinatra but we have only /:from/

:to as a route declared in Sinatra, how is Sinatra able to match them?

Whenever a request hits a server, the server gets the request path and

sends it as ENV["PATH_INFO"] to the Rack application. Mounting applica-

tions works because, when dispatching the request to Sinatra, Rails

removes /translator from env["PATH_INFO"], so Sinatra only sees /en/pl (as

if the browser were accessing /en/pl straight in the Sinatra application).

All this is outlined in the Rack specification, which also specifies that

Rails should set env["SCRIPT_NAME"] = "/translator" in order to tell Sinatra

that it is mounted in a specific point, in case Sinatra wants to use this

information.

The router in Rails 3 is a perfect example of the flexibility that can be

achieved with Rack, and there is still much more to be improved. For

example, could authentication or testing frameworks enjoy this flexibil-

ity? Certainly! And luckily, a few frameworks in the community already

do it. This is what we are going to check out next!

7.5 Taking It to the Next Level with Devise and Capybara

If any of our applications are going to provide an interface for trans-

lations, we should make sure this interface is password-protected and

that we can properly test its functionality. In this section, let’s take a

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=161

TAKING IT TO THE NEXT LEVEL WITH DEVISE AND CAPYBARA 162

look at Devise,8 a full-stack authentication solution based on Rack, and

a deeper look at how Capybara9 can be used to test Rack applications.

Adding Cross-Application Authentication

Devise is an interesting solution for authentication because it provides,

in very few lines of code, a whole authentication stack, with sign-in,

sign-up, password recovery, and more. It uses Warden10 to move the

authentication handling to the middleware stack, allowing any appli-

cation, regardless if it is Sinatra or a Rails controller, to use the same

authentication rules.

To add Devise to our Translator app, we first need to add it to your

Gemfile and call Bundler to install it:

Download translator/2_final/Gemfile

gem "devise", "1.1.3"

With the gem installed in our machine, we need to invoke the devise:in-

stall generator:

bundle exec rails g devise:install

The generator copies a locale file and a initializer with several configu-

ration options to our application. At the end, it also prints some steps

that we need to do manually.

The first one is to configure Action Mailer for development:

Download translator/2_final/config/environments/development.rb

config.action_mailer.default_url_options = { :host => 'localhost:3000' }

Then add flash messages to our layout:

Download translator/2_final/app/views/layouts/application.html.erb

<p class="notice"><%= notice %></p>

<p class="alert"><%= alert %></p>

And finally add a root route:

Download translator/2_final/config/routes.rb

root :to => "home#index"

8. https://github.com/plataformatec/devise

9. https://github.com/jnicklas/capybara

10. https://github.com/hassox/warden

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/translator/2_final/Gemfile
http://media.pragprog.com/titles/jvrails/code/translator/2_final/config/environments/development.rb
http://media.pragprog.com/titles/jvrails/code/translator/2_final/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/jvrails/code/translator/2_final/config/routes.rb
https://github.com/plataformatec/devise
https://github.com/jnicklas/capybara
https://github.com/hassox/warden
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=162

TAKING IT TO THE NEXT LEVEL WITH DEVISE AND CAPYBARA 163

Since our root route points to a HomeController, let’s implement it as

well. For now, the index action simply renders a link to the mounted

Sinatra application:

Download translator/2_final/app/controllers/home_controller.rb

class HomeController < ApplicationController

def index

render :inline =>

"<%= link_to 'Translate from English to Polish', '/translator/en/pl' %>"

end

end

With all of the setup done, we are ready to create our first Devise model,

called Admin:

bundle exec rails g devise Admin

And then run the migration added by the generator:

rake db:migrate

At this point, we didn’t make any significant change to our application,

but if we run our integration tests, they will fail. This is because Rails is

trying to load fixtures for our integration test. Let’s disable it by remov-

ing fixtures :all from ActiveSupport::TestCase at test/test_helper.rb. Also, since

we defined a root route, let’s remove the default public/index.html file as

well.

With integration tests passing once again, let’s fire up a new server,

visit /admins/sign_up, create a new admin account, and sign in. You can

also access /admins/edit if you want to change your account (although

you may want to disable this sign-up ability before deploying the app).

Devise provides several helpers to restrict access to your Rails con-

trollers. Since we created a model called Admin, we can use authenti-

cate_admin! as a before filter, and the request proceeds only if an admin

model is authenticated:

class PostsController < ApplicationController

before_filter :authenticate_admin!

end

However, we want to add authentication to our Sinatra app, where

Devise does not include any helpers. Fortunately, this is still trivial

to achieve with Devise because of Warden. Whenever we invoke authen-

ticate_admin! in a Rails controller, it simply executes the following:

env["warden"].authenticate!(:scope => "admin")

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/translator/2_final/app/controllers/home_controller.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=163

TAKING IT TO THE NEXT LEVEL WITH DEVISE AND CAPYBARA 164

Figure 7.2: The middleware stack and Rack applications involved in a

request to a Rails 3 app with Sinatra, Warden, and Devise

The env["warden"] object used previously is a proxy created by the War-

den middleware, and this middleware is added by Devise to the Rails

middleware stack using a Rails::Engine, just as we did in Section 5.3,

MuteMiddleware, on page 111. Since this middleware is executed before

hitting the router, the proxy object is also available in Sinatra, and we

can easily add authentication to Translator::App in a before filter:

Download translator/2_final/lib/translator/app.rb

before do

env["warden"].authenticate!(:scope => "admin")

end

Now when you request the Sinatra application without an admin signed

in, the previous before filter will throw an error. This error is caught by

the Warden middleware using Ruby’s throw/catch syntax and allowing

Warden to redirect you to the sign-in page inside Devise. Once you sign

in, the previous code will simply return the current admin in session,

proceeding with Sinatra request.

Although this approach allows us to use the same authentication mech-

anism across different Rack applications, it has one issue: it requires

us to change the Sinatra application by adding a before filter. That said,

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/translator/2_final/lib/translator/app.rb
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=164

TAKING IT TO THE NEXT LEVEL WITH DEVISE AND CAPYBARA 165

if we are using a third-party Sinatra application, like the one provided

in the Resque11 gem, we won’t be able to modify it.

In this case, we could ensure authentication at the router level, without

a need to change the Sinatra application, as shown here:

authenticate "admin" do

mount Translator::App, :at => "/translator"

end

The authenticate shown previously is added by Devise to the Rails

router, and it simply uses the router’s constraint API to ensure the

"admin" role is authenticated. Let’s check its implementation in Devise

source code:

def authenticate(scope)

constraint = lambda do |request|

request.env["warden"].authenticate!(:scope => scope)

end

constraints(constraint) do

yield

end

end

Regardless if we choose a before filter or a router constraint to require

authentication in our Sinatra application, we can check the translator

backend is now secure by rerunning our test suite and watching it fail.

1) Error:

test_can_translate_messages_from_a_given_locale_to_another(TranslatorAppTest)

Capybara::ElementNotFound: cannot fill in, no text field, text area or

password field with id, name, or label 'date.formats.default' found

The test cannot find the "date.formats.default" label given to fill_in because

it is showing the /admin/sign_in page instead of the translations page. To

fix it, let’s authenticate an admin in our integration test using a setup

hook:

Download translator/2_final/test/integration/translator_app_test.rb

setup { sign_in(admin) }

def admin

@admin ||= Admin.create!(

:email => "admin_#{Admin.count}@example.org",

:password => "123456"

)

end

11. https://github.com/defunkt/resque

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/translator/2_final/test/integration/translator_app_test.rb
https://github.com/defunkt/resque
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=165

TAKING IT TO THE NEXT LEVEL WITH DEVISE AND CAPYBARA 166

def sign_in(admin)

visit "/admins/sign_in"

fill_in "Email", :with => admin.email

fill_in "Password", :with => admin.password

click_button "Sign in"

end

With this setup, let’s run our test suite again and watch it pass! Notice

we decided to manually sign the admin in by filling out the form, instead

of using a hack in our tests that modifies the session or passes in a

cookie. In fact, even if we wanted to modify the session or a cookie,

Capybara would not allow us to do that. And, as we will see next, it

actually has a great reason to not allow this.

Adding Cross-Browser Testing

When we go back and check the code created with enginex in any of

the previous chapters, we notice that, for our integration tests, enginex

creates an ActiveSupport::IntegrationCase class instead of using Action-

Controller::IntegrationTest:

Define a bare test case to use with Capybara

class ActiveSupport::IntegrationCase < ActiveSupport::TestCase

include Capybara

include Rails.application.routes.url_helpers

end

While writing Rails integration tests using ActionController::IntegrationTest,

we have full access to the raw request and response objects, allow-

ing us to check and manipulate cookies, sessions, headers, and so

on. Capybara, on the other hand, has a very closed API that does

not expose these. That said, if we simply included Capybara in Action-

Controller::IntegrationTest, we would be tempted to access and manipulate

these objects, leading to both conceptual and practical issues.

Let’s discuss the conceptual issue a bit. Capybara was designed to let

us write integration tests from the mind-set of an end user. For exam-

ple, imagine we are building an ecommerce site that keeps the last five

products we viewed in the footer. If our implementation is simply stor-

ing these product IDs in the session, a naive integration test would

simply assert that, after accessing a product page, the product ID was

added to the session.

The issue with this kind of test is that the ecommerce user does not

care at all if something was stored in the session. They just want to

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=166

TAKING IT TO THE NEXT LEVEL WITH DEVISE AND CAPYBARA 167

Test Suite Driver

visit "/posts" navigate.to "/posts" GET /posts

HTTP 1.1 200 OKResponseParsed response

Figure 7.3: Call trace when using Capybara with Selenium driver and

Firefox

see the last-visited products in the footer and be able to click them,

something we did not assert in our tests.

Besides, the fact we store this information in the session is an imple-

mentation detail. If at some point we decide to keep this data in a

cookie, our naive test will fail, while it should still pass since the user

interface has not changed at all. This is a common symptom in tests

too coupled to their implementation.

For this reason, Capybara hides all these internals from you, which

works out well considering that one of the most important features in

Capybara is that it supports different drivers. Except for the Rack test

driver, which is Ruby-specific and accesses a Rack application directly,

Capybara drivers manipulate a browser, which then accesses our appli-

cation through a web server. Some drivers such as as Selenium use

common browsers as Mozilla Firefox, Internet Explorer, and Google

Chrome, while others interact with a headless browser like HtmlUnit

and EnvJS.

As you may expect, each browser supported by Selenium must expose a

limited API. Some may expose access to cookies; others may not. Some

headless browsers may give you full control on request headers, but

others do not. To allow you to switch drivers and browsers without a

need to rewrite a huge part of your integration tests, Capybara focuses

on the common set supported by most of them.

By default, Capybara uses Rack::Test, which is the same library used

by Rails 3 integration tests and does not require our application to be

exposed through a web server. But we can easily change our Translator

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=167

WRAPPING UP 168

application tests to use Selenium12 by adding the following lines to our

test helper:

Download translator/2_final/test/test_helper.rb

require "selenium-webdriver"

Can be :chrome, :firefox or :ie

Selenium::WebDriver.for :firefox

Capybara.default_driver = :selenium

class ActiveSupport::TestCase

Disable transactional fixtures for integration testing

self.use_transactional_fixtures = false

end

Selenium uses real browsers to test our application. By default it uses

Firefox,13 which you need to have installed before running tests again.

After you install it, run our integration tests again, and notice that

Selenium is automatically starting Firefox and driving it against our

website! At the end, our tests still pass!

Because Selenium needs to access a web server for each request, Capy-

bara automatically starts one up. Since Capybara fires this new web

server in a thread, the database connection used in tests is not the

same used by the server in each request. That said, if we use transac-

tional fixtures to wrap each test in a database transaction, the data

created in tests won’t be available in the server since transactional

data is not shared between database connections until it is commit-

ted. This is the reason we need to disable transactional fixtures in our

test/test_helper.rb file, even though it reduces performance.

Another consequence of disabling transactional fixtures is that the data

stored in our database is not cleaned up between tests, and this will

definitely get in the way as we add new tests to our suite. Fortunately,

a few solutions are already available today that do all this work for us.

One that stands out is Database Cleaner,14 since it supports different

ORMs and databases.

7.6 Wrapping Up

In this chapter, we created another Rails application and used the

opportunity to better describe how Rails applications are structured

12. http://seleniumhq.org/

13. http://www.mozilla.com/firefox/

14. https://github.com/bmabey/database_cleaner

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://media.pragprog.com/titles/jvrails/code/translator/2_final/test/test_helper.rb
http://seleniumhq.org/
http://www.mozilla.com/firefox/
https://github.com/bmabey/database_cleaner
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=168

WRAPPING UP 169

and designed. We discussed the importance of the Rack specification

and how it makes easy for different frameworks (such as Rails and

Sinatra) to play along without hassle. We also learned more about I18n,

its backends, and its extensions. Plus, we found and implemented a

good case to use a simple key-value store as Redis.

At the end, we discussed two gems that are widely used in the Rails

community: Devise and Capybara. Even though it was simply an intro-

duction, I advise you to take the next step and play with them a bit

more. And by playing, I mean not only using them but checking out

their source code. You will see how Devise uses ActionController::Metal,

as we saw in Section 3.3, Playing with Metal, on page 70, to define

a bare-bones controller and learn how Capybara makes use of Rack

applications and handlers to automatically start up servers.

That finishes our tour of Rails 3. Everything we discussed (the render-

ing stack, railties, engines, generators, Active Model, and so on) are

not only powerful APIs for the development of Rails extensions and

applications but also for the development of Rails itself. We can defi-

nitely expect more powerful engines and more Active Model modules in

upcoming Rails releases.

While developing your next web application or maintaining an existing

one, remember all the tools available to make your code cleaner. You

can use responders to DRY up your controller and use generators to

keep you and your team productive. You are also able to analyze other

Rails extensions source code, submit changes, and debug problems

with more ease.

Finally, you understand Rails better. You can explore other areas of the

source code, study other Action Controller and Active Models modules,

check other generators implementations, or read the source of railties,

engines, and applications with detail! Rails also has detailed guides on

how to contribute to Rails,15 so if you haven’t yet, this is the high time

to propose improvements or fix some bugs that may have bothered you

some time ago.

I hope this book has taught you new ways to improve your Ruby code

and Rails applications. Most of all, I hope you had fun.

—José Valim

15. http://guides.rubyonrails.org/contributing_to_rails.html

Report erratum

this copy is (P1.0 printing, March 2011)
Prepared exclusively for Uwe Ilgenstein

http://guides.rubyonrails.org/contributing_to_rails.html
http://books.pragprog.com/titles/jvrails/errata/add?pdf_page=169

Index
A
absence validators, 47

AbsenceValidator class, 47

Abstract Controller, 22

AbstractController::Layouts class, 25

AbstractController::Rendering class, 23

access control, with Devise, 162–168

Action Controller, 22

Action Mailer, 22

ActionController::Instrumentation class, 27

ActionController::Metal class, 70–72

ActionController::Renderers class, 27

ActionController::Rendering class, 27

ActionController::Responder class,

125–129

ActionController::TestCase class, 137

ActionDispatch::Callbacks class, 110

ActionDispatch::Head class, 110

ActionDispatch::ParamsParser class, 110

ActionDispatch::RemoteIp class, 110

ActionDispatch::ShowExceptions class, 110

ACTIONS_FOR_VERBS hash, 128

ActionView::Base class, 52

ActionView::MissingTemplate class, 127

ActionView::Resolver class, 53, 55

ActionView::Template class, 57

ActionView::Template.register_template_handler

method, 78

ActionView::Template.registered_template_handler

method, 81

Active Model, 30–51

ensuring compliance to API, 35

ActiveModel::AttributeMethods module, 32

ActiveModel::Callbacks class, 49

ActiveModel::Conversion class, 36

ActiveModel::Lint::Tests class, 35

ActiveModel::Name class, 37

ActiveModel::Naming class, 36

ActiveModel::Translation class, 37

ActiveModel::Validations class, 38

ActiveModel::Validations::PresenceValidator

class, 46

ActiveRecord class (I18n::Backend), 150

ActiveRecord::Railtie class, 93

ActiveSupport::Cache::Strategy::LocalCache

class, 110

ActiveSupport::IntegrationCase class, 17,

43, 166

ActiveSupport::IntegrationTest class, 166

ActiveSupport::Notifications class, 100

ActiveSupport::Notifications.subscribe

method, 116

API requests, responding to, 122

app_middleware method, 113

application events, handling, 97–118

Notifications API, 98–102

storing notifications asynchronously,

115–118

using Rack, 106–115

using Rails engines, 102–106

application.rb file, 15, 16

applications, translating, 147–168

I18n backends and extensions,

150–153

Rails::Application and, 148–149

Rails router, about, 159–161

Sinatra library, 153–159

using Devise and Capybara, 162–168

assignment, about, 25

asynchronous notification storage,

115–118

attribute_before_type_cast method, 34

attribute_method_affix method, 34

attribute_method_suffix method, 33

AttributeMethods module, 32

attributes method, 39

authenticate method, 165

authentication, with Devise, 162–168

Prepared exclusively for Uwe Ilgenstein

AUTOLOAD METHOD HTTP FUNCTIONALITY

autoload method, 32

B
Base class (ActionView), 52

boot.rb file, 15

booting dummy application, 15

C
Cache class (I18n::Backend), 151

cache_key variable, 62, 65

cache keys, 62, 65

cache responders, 135–139

call method, 76, 125

implemented by

ActionController::Responder, 125

Callbacks class (ActionDispatch), 110

Callbacks class (ActiveModel), 49

callbacks, 49

Capybara, 154, 162–168

Cascade class (I18n::Backend), 151

Chain class (I18n::Backend), 150

class_attribute method, 40

class_collisions_check method, 86

class_path method (NamedBase), 87

Cldr class (I18n::Backend), 151

clear_cache method, 62

click_lnk method, 20

CmsController class, 68–72

config/application.rb file, 15, 16

config/boot.rb file, 15

config.ru file, 108

controllers, access control for, 162–168

Conversion class (ActiveModel), 36

create_mailer_file method, 86

cross-browser testing, 166–168

D
deadlocks, 117

Debugger class, 109

default_render method, 126

DELETE requests, responding to, 124

_determine_template method, 25

Devise solution, 162–168

DevKit toolkit, 9

Discount library, 80

dummy application, booting, 15

E
EachValidator class, 48

email, template handlers for, 74–94

API for, 76–80

customizing Rails generators, 85–92

exending Rails with railties, 92–94

engines, 102–106

applications and, 148

Enginex, 13–17

ERb for embedding code, 81

events (application-level), handling,

97–118

Notifications API, 98–102

storing notifications asynchronously,

115–118

using Rack, 106–115

using Rails engines, 102–106

exhibit_translations method, 157

expiring the resolver cache, 66

F
Fallbacks class (I18n::Backend), 151

file_name method (NamedBase), 87

filename_with_extensions method, 89

find_all" method, 54

cache_key, 62, 65

find_all method, 55

find_template method, 55, 56, 58

finish! method, 117

flash responders, 129–135

format method, 95

:format option, 84

G
Gemfile file, 14

generators, customizing, 85–92

ORM agnosticism and, 142

generators’ hooks, 88

generators’ source paths, 139

GET requests, responding to, 123, 157

Gettext class (I18n::Backend), 151

H
Haml language, 157

handlers gem, 77

HandlersController class, 77

hash lookups, 62–65

Head class (ActionDispatch), 110

headers method (SampleMail), 42

hooks, generator, 88

hooks, template engine, 88

HTTP cache responders, 135–139

HTTP functionality, 70

171
Prepared exclusively for Uwe Ilgenstein

HTTP VERB OBJECT#HASH METHOD

HTTP verb, in controllers, 122

HttpCache module, 137

human method, 37

I
I18n framework, 57, 129, 147

backends and extensions, 150–153

I18n::Backend::ActiveRecord class, 150

I18n::Backend::Cache class, 151

I18n::Backend::Cascade class, 151

I18n::Backend::Chain class, 150

I18n::Backend::Cldr class, 151

I18n::Backend::Fallbacks class, 151

I18n::Backend::Gettext class, 151

I18n::Backend::InterpolationCompiler class,

151

I18n::Backend::KeyValue class, 150

I18n::Backend::Memoize class, 151, 152

I18n::Backend::Metadata class, 151

I18n::Backend::Pluralization class, 151

I18n::Backend::Simple class, 150

I18n::Backend::Transliterator class, 151

I18n.localize (I18n.l) method, 150

I18n.translate (I18n.t) method, 150

If-Modified-Since header, 135

initialize! method, 149

initializers, Rails engines, 104

instrument method (Notifications API), 98

Instrumentation class (ActionController), 27

IntegrationCase class (ActiveSupport), 17,

43, 166

IntegrationTest class (ActiveSupport), 166

InterpolationCompiler class (I18n::Backend),

151

K
key-value stores, 147–168

I18n backends and extensions,

150–153

Rails::Application and, 148–149

Rails router, about, 159–161

Sinatra library, 153–159

using Devise and Capybara, 162–168

KeyValue class (I18n::Backend), 150

L
lambda keyword, 78

creating responders with, 125

Last-Modified header, 135

Layouts class (AbstractController), 25

load_tasks method, 149

LocalCache class (ActionDispatch), 110

locale_value method, 157

localize method (I18n), 150

Lock class (Rack), 110

LogTailer class, 109

M
Mail Form gem, 30–51

delivering form, 41–43

MailerGenerator class, 86

MailForm::Notifier class, 42

Markdown language, 75

match method, 161

Memoize class (I18n::Backend), 151, 152

Metadata class (I18n::Backend), 151

Metal class (ActionController), 70–72

MethodOverride class (Rack), 110

middleware, 108

middleware stack, 109

MIME types, 20

MissingTemplate class, 127

MongoDB, 99

MongoMapper, 99

mount method, 161

multipart email, template handlers for,

74–94

API for, 76–80

customizing Rails generators, 85–92

exending Rails with railties, 92–94

mute_regexp= method, 112

muting notifications, 111–115

N
Name class (ActiveModel), 37

NamedBase class, 86

Naming class (ActiveModel), 36

navigation_test.rb file, 17

navigational requests, responding to,

122

_normalize_args method, 24

_normalize_options method, 24

notifications, 97–118

muting, 111–115

storing asynchronously, 115–118

using Rack, 106–115

using Rails engines, 102–106

Notifications API, 98–102

Notifier class (MailForm), 42

O
Object#hash method, 62

172
Prepared exclusively for Uwe Ilgenstein

ORM AGNOSTICISM SINGLETON MODULE

ORM agnosticism, 142

orm_class method, 144

orm_instance method, 144

P
ParamsParser class (ActionDispatch), 110

paths with Rails::Engine, 103

paths, generator source, 139

pdf_renderer, 13–17

pdf_renderer.gemspec file, 15

pdf_renderer_test.rb file, 16, 21

persisted? method, 40

Pluralization class (I18n::Backend), 151

POST requests, responding to, 123, 158

Prawn library, 18–19

prepend_around_filter method, 115

PresenceValidator class

(ActiveModel::Validations), 46

_process_options method, 24

project generation with Enginex, 13–17

PUT requests, responding to, 124

Q
%Q{} shortcut (Ruby), 79

queues, 115

R
Rack API, 106–115, 159

Rack::Lock class, 110

Rack::MethodOverride class, 110

Rack::Runtime class, 110

Rack::Sendfile class, 110

rackup command, 108

Rails::Application class, 148–149

Rails::Engine class, 148

Rails::Engine class, 102–106

Rails engines, 102–106

Rails::Generators::Actions class, 95

Rails::Generators::MailerGenerator class, 86

Rails::Generators::NamedBase class, 86

Rails::Generators::ScaffoldControllerGenerator

class, 140

Rails::Rack::Debugger class, 109

Rails::Rack::LogTailer class, 109

Rails::Railtie class, 92

Rails router, about, 159–161

Rails versions, 9

RailsMetrics tool, 119

railties, 92–94

Rakefile, 15, 149

RDiscount wrapper, 80

Redis wrapper, 152

register_template_handler method, 78

registered_template_handler method, 57,

81

RemoteIp class (ActionDispatch), 110

render method, 12

_render_template method, 25

render_to_string method, 22–24, 27

renderer, creating, 12–29

renderer, defined, 18

Renderers class (ActionController), 27

Rendering class (ActionController), 27

Rendering class (ActiveSupport), 23

rendering stack, 22–27

Resolver class (ActionView), 53, 55

Resolver API, 54

resolver cache, expiring, 66

Resolver#clear_cache method, 66

resolvers (template resolvers), 54–62

configuring for production, 62–68

serving templates with Metal, 68–72

respond_with method, 121, 129

using by default, 141

Responder class (ActionController),

125–129

Responder::AppResponder class, 134

responders, 120–145

about, 122–124

ActionController::Responder class,

125–129

flash responder, 129–135

HTTP cache responder, 135–139

Responders::Flash module, 132

Responders gem, 145

Responders::HttpCache module, 137

Resque gem, 165

router (Rails 3), 159–161

Runtime class (Rack), 110

S
ScaffoldControllerGenerator class, 140

scaffolding, 60, 120

using respond_with by default in, 141

Selenium, 167

Sendfile class (Rack), 110

ShowExceptions class (ActionDispatch),

110

Simple class (I18n::Backend), 150

Sinatra library, 153–159

Singleton module, 67

173
Prepared exclusively for Uwe Ilgenstein

SINGLETON RESOLVERS YAML FILES

singleton resolvers, 67

singular method, 37

source paths, 139

source_root method, 92, 140

SqlMetrics::Metric class, 99

SqlMetrics::Metric class, 100

SqlMetrics.thread.join method, 117

SqlTemplate model, 54

SqlTemplate::Resolver templater, 54–62

configuring for production, 62–68

serving templates with Metal, 68–72

Singleton module in, 67

storing notifications asynchronously,

115–118

subscribe method

(ActiveSupport::Notifications), 116

subscribe method (Notifications API), 98

T
Template class (ActionView), 57

template method (Thor::Actions), 87, 95

template engines’ hooks, 88

template handlers, 74–94

API for, 76–80

customizing Rails generators, 85–92

exending Rails with railties, 92–94

template resolvers, 53–62

configuring for production, 62–68

expiring cache of, 66

serving templates with Metal, 68–72

templater applications, 54–62

configuring for production, 62–68

serving templates with Metal, 68–72

test_helper.rb file, 17

test/integration/navigation_test.rb file, 17

test/pdf_renderer_test.rb file, 16, 21

test/test_helper.rb file, 17

TestCase class, 137

Thor::Actions module, 87, 95

thread.join method, 117

threads, 115

to_format method, 126

to_html method, 126

to_key method, 36

to_model method, 35

to_param method, 36

translate method (I18n), 150

translating applications, 147–168

I18n backends and extensions,

150–153

Rails::Application and, 148–149

Rails router, about, 159–161

Sinatra library, 153–159

using Devise and Capybara, 162–168

Translation class (ActiveModel), 37

transliteration support (I18n), 150

Transliterator class (I18n::Backend), 151

U
@user.to_xml method, 128

UsersController class, 60

V
validates method, 47

validates_presence_of method, 46

validates_with method, 46

Validations class (ActiveModel), 38

validations, 38

validators, 46–49

versions, Rails, 9

view_assigns method, 25

view_context object, 52

view_paths object, 52

view templates, 52–73

:virtual_path path, 58

visit method, 20

W
Warden middleware, 162, 164

@what variable, 79

Y
YAML files, 147

174
Prepared exclusively for Uwe Ilgenstein

More from PragProg.com

SQL Antipatterns
If you’re programming applications that store data,

then chances are you’re using SQL, either directly

or through a mapping layer. But most of the SQL

that gets used is inefficient, hard to maintain, and

sometimes just plain wrong. This book shows you

all the common mistakes, and then leads you

through the best fixes. What’s more, it shows you

what’s behind these fixes, so you’ll learn a lot about

relational databases along the way.

SQL Antipatterns: Avoiding the Pitfalls of

Database Programming

Bill Karwin

(300 pages) ISBN: 978-19343565-5-5. $34.95

http://pragprog.com/titles/bksqla

Seven Languages in Seven Weeks
In this book you’ll get a hands-on tour of Clojure,

Haskell, Io, Prolog, Scala, Erlang, and Ruby.

Whether or not your favorite language is on that

list, you’ll broaden your perspective of

programming by examining these languages

side-by-side. You’ll learn something new from each,

and best of all, you’ll learn how to learn a language

quickly.

Seven Languages in Seven Weeks: A Pragmatic

Guide to Learning Programming Languages

Bruce A. Tate

(300 pages) ISBN: 978-1934356-59-3. $34.95

http://pragprog.com/titles/btlang

Prepared exclusively for Uwe Ilgenstein

http://pragprog.com/titles/bksqla
http://pragprog.com/titles/btlang

More from PragProg.com

Driving Technical Change
Your co-workers’ resistance to new technologies

can be baffling. Learn to read users’ "patterns of

resistance"—and then dismantle their objections.

Every developer must master the art of

evangelizing. With these techniques and strategies,

you’ll help your organization adopt your

solutions—without selling your soul to

organizational politics.

Driving Technical Change: Why People On Your

Team Don’t Act On Good Ideas, and How to

Convince Them They Should

Terrence Ryan

(200 pages) ISBN: 978-1934356-60-9. $32.95

http://pragprog.com/titles/trevan

Agile in a Flash
The best agile book isn’t a book: Agile in a Flash is

a unique deck of index cards that fit neatly in your

pocket. You can tape them to the wall. Spread them

out on your project table. Get stains on them over

lunch. These cards are meant to be used, not just

read.

Agile in a Flash: Speed-Learning Agile Software

Development

Jeff Langr and Tim Ottinger

(110 pages) ISBN: 978-1-93435-671-5. $15.00

http://pragprog.com/titles/olag

Prepared exclusively for Uwe Ilgenstein

http://pragprog.com/titles/trevan
http://pragprog.com/titles/olag

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home Page for "Crafting Rails Applications"

http://pragprog.com/titles/jvrails

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/jvrails.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

Prepared exclusively for Uwe Ilgenstein

http://pragprog.com/titles/jvrails
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/jvrails
www.pragprog.com/catalog

	Contents
	Acknowledgments
	Preface
	Who Should Read This Book?
	What Is in the Book?
	How to Read This Book
	Online Resources

	Creating Our Own Renderer
	Generating Projects with Enginex
	Writing the Renderer
	Understanding Rails Rendering Stack
	Taking It to the Next Level
	Wrapping Up

	Building Models with Active Model
	Creating Our Model
	Taking It to the Next Level
	Wrapping Up

	Retrieving View Templates from Custom Stores
	Setting Up a SqlResolver
	Configuring Our Resolver for Production
	Serving Templates with Metal
	Wrapping Up

	Sending Multipart Emails Using Template Handlers
	Playing with the Template Handler API
	Building a Template Handler with Markdown + ERb
	Customizing Rails Generators
	Extending Rails with Railties
	Wrapping Up

	Managing Application Events with Rails Engines
	Storing Notifications in the Database
	Extending Rails with Engines
	Rails and Rack
	Storing Notifications Asynchronously
	Wrapping Up

	Writing DRY Controllers with Responders
	Understanding Responders
	Exploring ActionController::Responder
	The Flash Responder
	HTTP Cache Responder
	More Ways to Customize Generators
	Wrapping Up

	Translating Applications Using Key-Value Backends
	Revisiting Rails::Application
	I18n Backends and Extensions
	Rails and Sinatra
	Understanding the Rails Router
	Taking It to the Next Level with Devise and Capybara
	Wrapping Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

